Supplementary Information

Protic Ionic Liquid when Entrapped in Cationic Reverse Micelles Can Be Used as Suitable Solvent for a Bimolecular Nucleophilic Substitution Reaction

Matías A. Crosio, N. Mariano Correa, Juana J. Silber, R. Darío Falcone*

Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal \# 3 . C.P. X5804BYA Río Cuarto. Argentina.

Figure S1. Absorption spectra of the reaction of $\mathrm{Cl}^{-}(0.2 \mathrm{M})$ with S^{+}in neat EAN at 30 ${ }^{\circ} \mathrm{C} .\left[\mathrm{S}^{+}\right]=5 \times 10^{-5} \mathrm{M} . \mathrm{T}=30^{\circ} \mathrm{C}$.

Figure S2. Absorbance at 340 nm as a function of time in the reaction shown in Figure 2. (■) experimental data and (一) first order reaction fit. $\mathrm{W}_{\mathrm{s}}=0.05 .\left[\mathrm{Cl}^{-}\right]=0.1 \mathrm{M} .\left[\mathrm{S}^{+}\right]=$ $5 \times 10^{-5} \mathrm{M} . \mathrm{T}=30^{\circ} \mathrm{C}$. The spectra were recorded at 60 second intervals.

Table S1. $k_{\text {obs }}$ values obtained in toluene/BHDC/EAN RMs, varying the total concentration of BHDC ([BHDC $\left.]_{\text {tot }}\right)$ at different $\mathrm{W}_{\mathrm{s}} . \mathrm{T}=30^{\circ} \mathrm{C}$.

$\mathbf{W}_{\mathbf{s}}$	$[\mathbf{B H D C}]_{\text {tot }} / \mathbf{M}$	$\boldsymbol{k}_{\text {obs }} / \mathbf{s}^{-1}$
0.02	0.01	8.4×10^{-5}
	0.07	7.4×10^{-4}
	0.09	8.4×10^{-4}
	0.10	8.7×10^{-4}
	0.15	9.5×10^{-4}
	0.20	9.9×10^{-4}
0.05	0.03	7.0×10^{-4}
	0.06	7.5×10^{-4}
	0.08	8.2×10^{-4}
	0.10	8.5×10^{-4}
	0.15	9.1×10^{-4}
	0.19	9.4×10^{-4}
0.11	0.03	5.9×10^{-4}
	0.06	7.3×10^{-4}
	0.10	8.0×10^{-4}
	0.15	9.0×10^{-4}
	0.19	9.4×10^{-4}
0.17	0.03	1.8×10^{-4}
	0.07	2.6×10^{-4}
	0.09	2.9×10^{-4}
	0.10	3.2×10^{-4}
	0.15	3.7×10^{-4}
	0.20	4.0×10^{-4}

Derivation of the rate equation

The reaction of the sulfonium S^{+}with chloride ion presented in Scheme 2 is a bimolecular reaction, which follows the rate law descripted by equation S 1 :

$$
\begin{equation*}
\text { rate }=\frac{d[P]}{d t}=k_{2}\left[C l^{-}\right]\left[S^{+}\right] \tag{S1}
\end{equation*}
$$

If $\left[C l^{-}\right] \gg\left[S^{+}\right]$, a pseudo first order behavior for the kinetics of the reaction is assumed in order to quantify the reaction rate. Thus, the expression for the observable rate constant $\left({ }^{(}{ }_{o b s}\right)$ can be defined as equation S2:

$$
\begin{equation*}
k_{o b s}=k_{2}\left[C l^{-}\right] \tag{S2}
\end{equation*}
$$

where k_{2} is the second order rate constant and $\left[\mathrm{Cl}^{-}\right]$is the total nucleophile concentration.

As in the present work we used [BHDC] > critical micellar concentration (cmc) value $(0.01 \mathrm{M})^{1}, \mathrm{~S}^{+}$is incorporated into the RMs (as is expressed by equation S 3) favored by its low solubility in the aromatic solvent.

$$
\begin{equation*}
S_{o}^{+}+B H D C_{R M s} \rightleftharpoons S_{R M s}^{+} \tag{S3}
\end{equation*}
$$

where S_{o}^{+}and $S_{R M S}^{+}$symbolize the substrate in the toluene and in the RMs pseudophases, respectively. $B H D C_{R M s}$ represents the cationic RMs. As it is conventional for micellar aggregates, the concentration of micellized ${ }^{2}$ surfactant defined
as $[B H D C]_{R M s}$ (where $[B H D C]_{R M s}$ can be approximated to $[B H D C]_{t o t ~}$ - cmc) can be calculated, and if the mass balance for $\mathrm{S}^{+}\left(\left[\mathrm{S}^{+}\right]_{\text {tot }}=\left[\mathrm{S}^{+}\right]_{\mathrm{o}}+\left[\mathrm{S}^{+}\right]_{\mathrm{RMs}}\right)$ is considered, the partition constant of the substrate $\left({ }^{K}{ }_{p}\right)$ is defined as equation S4:

$$
\begin{equation*}
K_{p}=\frac{\left[S^{+}\right]_{R M s}}{\left[S^{+}\right]_{o}[B H D C]_{R M s}} \tag{S4}
\end{equation*}
$$

The overall reaction rate can be expressed as the sum of the rate in the organic pseudophase and in the RMs, as equation S5:

$$
\begin{equation*}
\text { rate }=k_{o}^{\prime}\left[S^{+}\right]_{o}+k_{R M S}^{\prime}\left[S^{+}\right]_{R M s} \tag{S5}
\end{equation*}
$$

where $\left[\mathrm{S}^{+}\right]_{\mathrm{o}}$ and $\left[\mathrm{S}^{+}\right]_{\mathrm{RMs}}$ are the concentration of S^{+}in organic pseudophase and in the RMs , both referred to the total volume. k_{o}^{\prime} and $k_{R M s}^{\prime}$ are the pseudo-first order rate constant values in the organic pseudophase and in BHDC RMs, respectively. Both rate constants are defined as equations S 6 and S 7 , respectively.

$$
\begin{align*}
& k_{o}^{\prime}=k_{2}^{o}\left[\mathrm{Cl}^{-}\right]_{o} \tag{S6}\\
& k_{R M S}^{\prime}=k_{2}^{R M S}\left[\mathrm{Cl}^{-}\right]_{R M S} \tag{S7}
\end{align*}
$$

Where k_{2}^{o} and $k_{2}^{R M s}$ are the second order rate constants in the organic and RMs pseudophases. $\left[\mathrm{Cl}^{-}\right]_{R M s}$ is the Cl^{-}concentration in the RMs referring to the volume of
the RMs $\left({ }_{m}\right)$. This concentration can be expressed also as the multiplication of the fraction of neutralized charge, β, and $[\mathrm{BHDC}]^{3,4}$ (equation S8).

$$
\begin{equation*}
k_{R M s}^{\prime}=k_{2}^{R M s} \beta[B H D C]_{R M s}^{m} \tag{S8}
\end{equation*}
$$

Additionally, the surfactant concentrations referred to the micellar phase volume ($[B H D C]_{R M S}^{m}$) can be expressed in concentrations referred to the total volume, ($[B H D C]_{R M s}$, taking into consideration the volume fraction occupied by the micellar phase, $V_{t o t} / V_{m}$ as equation S 9 shows.

$$
\begin{equation*}
k_{R M s}^{\prime}=k_{2}^{R M s} \beta \frac{V_{\text {tot }}}{V_{m}}[B H D C]_{R M s} \tag{S}
\end{equation*}
$$

The concentrations can be transformed into concentrations referred to the total volume of the system by taking into account just the phase volumes ${ }^{5}$ (equation S10).

$$
\begin{equation*}
\frac{V_{t o t}}{V_{m}}=\frac{1}{\bar{V}_{B H D C}[B H D C]_{R M s}} \tag{S10}
\end{equation*}
$$

where $\bar{V}_{B H D C}$ is the molar volume of BHDC. Thus, equation S 7 can be rewritten as:

$$
\begin{equation*}
k_{R M s}^{\prime}=k_{2}^{R M s} \beta \frac{1}{\bar{V}_{B H D C}} \tag{S11}
\end{equation*}
$$

When the BHDC RMs are formed, the rate constant in the organic pseudophase (toluene + BHDC surfactant monomers), k_{o}^{\prime} in equation S 5 , can be assumed as the observed rate constant value in the $\mathrm{cmc}\left({ }^{\left.k_{o b s}^{c m c}\right) \text {. It must be recalled that above the } \mathrm{cmc} \text {, }, ~ \text {, }}\right.$ the monomeric [BHDC] remains constant and the rate constant for the reaction in the organic solvent should be constant.

Taking into account the equations S3-11, the concentration of the substrate in the RMs can be expressed as equation S12:

$$
\begin{equation*}
\left[S^{+}\right]_{R M s}=\frac{K_{p}[B H D C]_{R M s}}{1+K_{p}[B H D C]_{R M s}}\left[S^{+}\right]_{t o t} \tag{S12}
\end{equation*}
$$

Thus, in the toluene/BHDC/EAN RMs the observed rate constant $k_{\text {obs }}$ can depicted as equation S13 (equation 5 in the main text):

$$
\begin{equation*}
k_{o b s}=k_{o b s}^{c m c}+\frac{k_{2}^{R M s} \beta \quad K_{p}[B H D C]_{R M s}}{\bar{V}_{B H D C} 1+K_{p}[B H D C]_{R M s}} \tag{S13}
\end{equation*}
$$

References

1- A. Jada, J. Lang, R. Zana, J. Phys. Chem. 1990, 94, 381-387.

2- C. A. Bunton, F. Nome, F. H. Quina, L. S. Romsted, Acc. Chem. Res. 1991, 24, 357364.

3- D. Blach, M Pessêgo, J. J. Silber, N. M. Correa, L. García-Río, R. D. Falcone, Langmuir, 2014, 30, 12130-12137.

4- E. Fernandez, L. Garcia-Rio, P. Rodriguez-Dafonte, J. Colloid Int. Sci. 2007, 316, 1023-1026.

5- M. Andujar-Matalobos, L. Garcia-Rio, S. Lopez-Garcia, P. Rodriguez-Dafonte, J. Colloid Int. Sci. 2011, 363, 261-267.

