Photophysical properties of electron-deficient free-base corrole bearing meso-fluorophenyl substituents.

Lei Zhang,[†] Zi-Yu Liu,[†] Xuan Zhan,[‡] Lili Wang[†], Hui Wang,^{*†} and Hai-Yang Liu^{*‡}

[†] State Key Laboratory of Optoelectronics Materials and Technologies, Sun-Yat Sen University, Guangzhou 510275, China

‡ Department of Chemistry, South China University of Technology, Guangzhou 510641, China.

Supporting Information

Figure S1. Fluorescence lifetime of S_1 state of F_0C , F_5C , $F_{10}C$ and $F_{15}C$ in toluene measured by TSCPC.

Figure S2. Femtosecond transient absorbance of 3E-5 M of F_0C in toluene. Pump wavelength was 400 nm (2 μ J/pulse).

Figure S3. Femtosecond transient absorbance of 3E-5 M of F_5C in toluene. Pump wavelength was 400 nm (2 μ J/pulse). The initial TA is too tiny to be present clearly. The TA spectra have smoothed.

Figure S4. Femtosecond transient absorbance of 3E-5 M of $F_{15}C$ in toluene. Pump wavelength was 400 nm (2 μ J/pulse).

The TA of S_2 is too tiny to be recorded by 400 nm excitation. It is because the absorption cross secection of S_2 is so small. To observe the S_2 time profile, one can use the 415 nm pumping samples. However, the 415 nm lead to huge cross-phase modulation (XPM) signal,¹ which influences chirp-correction and the reconstruction of TA spectra. Therefore, we present TA spectra excited by 400 nm.

Figure S5. Time profiles of S_0 bleaching at ca 432 nm. Red lines correspond to the single exponential fitting results. The fitting parameters are shown as follow.

	y0	A1	t1(lifetime)	k ₁ (time
	(fixed)		ps	constant)
				$(10^8 \mathrm{s}^{-1})$
F ₅ C	0	-0.06±2.06E-4	31597.7±1658.97	0.32 ±0.02
F ₁₀ C	0	-0.079±2.19E-4	34143.193±1521.45	0.29±0.01
F ₁₅ C	0	-0.080±3.704	15745.9±573.49	0.64±0.02

Figure S6. The results of the SVD and global-fitting analyses of TA spectra 30 μ M of

F₅C in toluene.

Figure S7. The results of the SVD and global-fitting analyses of TA spectra 30 μ M of F₁₅C in toluene.

Figure S8. Time profiles of 470 nm of 30 μ M of F₀C in toluene after 415 nm pump. The pump energy is 0.5 μ J/pulse.

Figure S9. Comparison of UV-visable spectra of F_0C in toluene at different concentrations. Inset: the ε change when changing the

concentration from 1.65E-5 M to 8E-5 M. No apparent difference was recorded.

Figure S10. Time profiles of high concentration of tetraphenylporphyrin (TPP) in toluene at probed at 438 nm after excited at 415 nm. The lifetime of the S₁ state of TPP is 12.4 ns. ² If the delay line is well adjusted, we should observe no decay until 4 ns. To do so, we guarantee the long time profile in Figure 7 is coming from real signal and not misadjustment of the delay line.

^{1.} M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki and A. Maciejewski, *Appl Phys B-Lasers O*, 2002, **74**, 19-27.

^{2.} O. Ohno, Y. Kaizu and H. Kobayashi, J. Chem. Phys., 1985, 82, 1779-1787.