Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2015

A luminescent zinc metal-organic framework for sensing of metal cations, anions and small molecules

Chang Liu and Bing Yan*

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China

Figure S1 The PXRD patterns of simulated ZIF-90, as-synthesized ZIF-90 and ZIF-90a (desolvated ZIF-90).

Figure S2 N₂ sorption isotherms for ZIF-90a at T=77K.

Figure S3 Powder X-ray diffraction patterns of a) simulated ZIF-90, b) as-synthesized ZIF-90, and diffraction patterns obtained after the introduction of various anions: c) NO_3^- , d) $C_2O_4^{2-}$, e) CO_3^{2-} , f) Br⁻, g) F⁻, h) Cl⁻, i) I⁻, j) PO_4^{3-} , k) CrO_4^{2-} , I) HCO_3^- , m) NO_2^- and n) S²⁻.

Figure S4 Powder X-ray diffraction patterns obtained after the introduction of various organic small molecules: a) formamide, b) ethylenediamine, c) dimethyl formamide, d) acetonitrile, e) diethyl ether, f) acetone, g) methanol and h) ethanol, both are almost identical to the simulated ZIF-90.

Figure S5 the photoluminescence spectra of ZIF-90a (3 mg) dispersed into different aqueous solution of various metal ions (10⁻² M).

Figure S6 The scanning electron microscope (SEM) (a) and energy dispersive spectrometer (EDS) (b) analysis of the ZIF-90a/Cd²⁺.

element	weight percent	atomic percent
0	9.17	28.04
AI	1.47	2.67
Cl	24.66	34.05
Zn	22.55	16.88
Cd	42.16	18.36
total	100.00	

Table S1 The weight percent and atomic percent of elements in the ZIF-90a/Cd $^{2+}$.

Figure S7 Emission spectra of ZIF-90a/Cu²⁺ in the presence of various concentrations of Cu²⁺ under excited at 476 nm.

 Table S2 Response of luminescence lifetime of ZIF-90a1 towards aqueous solutions of various metal cations.

Metal ions	τ (μs)
Cd ²⁺	315.51
Ca ²⁺	252.30
Mn ²⁺	243.68
Hg ²⁺	226.74
Co ²⁺	204.72
Ni ²⁺	202.88
Cu ²⁺	128.71

Figure S8 The luminescence intensity of the ZIF-90a interacting with different anions in 10^{-2} mol L⁻¹ aqueous solution of K_xN1 and Na_xN2 (excited monitored at 476 nm).

Figure S9 Fluorescence lifetime of ZIF-90a in the absence (black) and presence (red) of CrO₄²⁻ in aqueous solution.

Figure S10 Emission spectra (a) and luminescence intensity (b) of ZIF-90a in the presence of various ratios of ZIF-90a and acetone under excited at 476 nm.

Figure S11 UV-vis absorption spectra of ZIF-90a and organic small molecules.