Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Supplementary information for

Construction of a multipurpose photochemical reactor with on-line spectrophotometric detection

Tamás Ditrói^a, József Kalmár^b, Jose Angel Pino-Chamorro,^a Zsolt Erdei,^a Gábor Lente^{*a} and István Fábián^a

^a Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary. ^b MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, Debrecen, Hungary.

Fig. S1 Photograph of the photoreactor. Note: the attenuator is not present in this setup.

Fig. S2 Spectral photon flux of the excitation lamp as a function of wavelength as determined by relative energy measurements and actinometry ($\Phi_{p:}$ total photon flux of the lamp).

Fig. S3 Separation of the detection and excitation planes inside the cuvette.

Fig. S4 Disappearance of aqueous sulfur(IV) in the photoinitiated and cerium(III)-catalyzed autoxidation of $H_2O \cdot SO_2$ detected at 276 nm. [Ce(III)] = 1.0 mM; [S(IV)] = 2.0 mM; [H_2SO_4] = 0.10 M; [O_2] = 0.20 mM; path length: 1.00 cm; $V = 3.00 \text{ cm}^3$; $T = 25.0 \degree$ C; stirring: 800 rpm. Illumination pattern: 5 s periods of illumination (marked with red line) followed by 5 s of dark periods. (Inset: a closer view of the dark period between 15 and 20 s).

Fig. S5 Spectral changes observed during photoinitiated and cerium(III)-catalyzed autoxidation of H₂O·SO₂. [Ce(III)] = 1.0 mM; [S(IV)] = 2.0 mM; [H₂SO₄] = 0.10 M; [O₂] = 0.20 mM; path length: 1.00 cm; V = 3.00 cm³; T = 25.0 °C; stirring: 800 rpm.

Fig. S6 Direct photochemical degradation of 2,4,6-trichlorophenol (TCP) in aqueous solution. [TCP] = 0.20 mM; [phosphate buffer] = 10.0 mM; path length: 1.00 cm; V = 3.00 cm³; T = 25.0 °C; stirring: 800 rpm. Inset: kinetic trace measured at 312 nm.

Fig. S7 Photochemical degradation of 2,6-dichloro-1,4-benzoquinone (DCQ) in aqueous solution. [DCQ] = 0.31 mM; path length: 1.00 cm; V = 3.00 cm³; T = 25.0 °C; stirring: 800 rpm. Inset: kinetic trace measured at 525 nm.

Fig. S8 Degradation of methylene blue under different conditions, 1.0 L of 50 μ M MB irradiated by medium pressure mercury lamp (**■**), 2.00 cm³ of 40 μ M MB in the constructed photoreactor (•), 2.00 cm³ of 30 μ M MB with 114 μ g anatase in the constructed reactor (**▲**). Path length: 1.00 cm; $V = 2.00 \text{ cm}^3$; T = 25.0 °C; stirring: 1000 rpm.

Fig. S9 Beer's plot for methylene blue in the presence of suspended anatase. $c(TiO_2) = 50.2 \mu g/mL$, pH 7.15 (10.0 mM phosphate buffer), T = 25.0 °C; stirring: 1000 rpm.

Fig. S10 Demonstration of the lack of additivity of absorbance values in the heterogeneous system containing anatase and methylene blue in a Agilent 8453 diode array spectrophotometer (stirring: 1000 rpm). MB: homogeneous solution of methylene blue; TiO₂: suspension of anatase in water; TiO₂ + MB: suspension of anatase in a solution of methylene blue; difference: the difference of spectra TiO₂ + MB and TiO₂.

Fig. S11 Kinetic trace observed at 330 nm during the illumination of the actinometric solution. The illumination started after a 30-second initial dark period. 15 mg of solid K₃[Fe(C₂O₄)₃] was dissolved in 25 cm³ of 0.050 M H₂SO₄ to prepare the actinometric solution, 2.50 cm³ of which was irradiated for 250 s in the experiment shown. *T* = 25.0 °C; stirring: 800 rpm.

Fig. S12 Photo of the experimental setups with flow-through arrangement

Fig S13 Kinetic traces detected during the demonstration experiments using the flowthrough setup of the instrument. Test reaction: Ru(bipy)₃²⁺-sensitized aqueous photochemical oxidation of 2,4,6-trichlorophenol (TCP) in the presence of S₂O₈²⁻ as an oxidant. [K₂S₂O₈] = 20 mM; [HCI] = 1.0 mM; [Ru(bipy)₃²⁺] = 3.33 μ M; [TCP] = 0.56 mM; path length 1.00 cm; *T* = 25.0 °C. Flow rate (for red and green curves: 3.53 cm³/min, ; stirring (for blue and red curves): 800 rpm.