Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2015

Supporting Information

for

Temperature-dependent Luminescent Properties of Lanthanide(III) β-

diketonate Complexes-doped Laponite

Qianqian Xu, Zhiqiang Li, Yige Wang and Huanrong Li*

School of Chemical Engineering and Technology, Hebei University of Technology,

GuangRong Dao 8, Hongqiao District, Tianjin 300130, P.R. China.

E-mail: lihuanrong@hebut.edu.cn

Table of Contents

Figure S1. The scanning electron micrographs images of the hybrid materials.	S3
Figure S2. Luminescence spectra of (Eu-HFA)@LA and (Tb-HFA)@LA.	S3
Figure S3. Photoluminescence spectra of the hybrid materials.	S4
Table S1 . The temperature-dependent $\eta_{Tb \rightarrow Eu}$ of (Tb-HFA)@LA and (Eu ₁ Tb ₉₉ -HFA	A)@LA
from 77K to 287K.	S4
Table S2. The temperature-dependent decay time of (Tb-HFA)@LA and (E	u ₁ Tb ₉₉ -
HFA)@LA from 77K to 287K. S4	
Table S3. Several photoluminescent data of (Eu-HFA)@LA.	S5
Table S4. The photoluminescence quantum yields of (Eu-HFA)@LA, (Tb-HFA)@L	LA and
$(Eu_1Tb_{99}-HFA)@LA.$	S5

Figure S1. The scanning electron micrographs for a) (Eu-HFA)@LA and b) (Tb-HFA)@LA. (The scale bar is 400nm)

Figure S2. Excitation spectra (black line) monitored at 612 nm and Emission spectra (red line) excited at 328 nm of a) (Eu-HFA)@LA, Excitation spectra (black line) monitored at 544 nm and Emission spectra (red line) excited at 301 nm of b) (Tb-HFA)@LA.

Figure S3. Photoluminescence spectra of a) (Eu-HFA)@LA and b) (Tb-HFA)@LA over the temperature range from 77K to 287K.

Table S1. The temperature-dependent $\eta_{Tb \rightarrow Eu}$ of (Tb-HFA)@LA and (Eu₁Tb₉₉-HFA)@LA from 77K to 287K.

T/K	77	107	137	167	197	227	257	287
$\eta_{Tb \rightarrow Eu}$	0.0437	0.0005	0.0248	0.0589	0.0142	0.0696	0.287	0.475

Table S2. The temperature-dependent decay time of (Tb-HFA)@LA and (Eu₁Tb₉₉-HFA)@LA from 77K to 287K.

T/K	77	107	137	167	197	227	257	287
$ au_{ ext{LA-Tb-HFA}}$	0.59	0.58	0.59	0.59	0.56	0.44	0.21	0.09
τ _{LA-Eu1Tb99-HFA}	0.57	0.58	0.58	0.55	0.55	0.41	0.15	0.05

Table S3. Several photoluminescent data of (Eu-HFA)@LA.				
τ (ms)	\mathbf{K}_{arr} (ms ⁻¹)	$K_{-}(ms^{-1})$	n	

t (IIIS)	rexp (ms)	m (m)		
0.35	2.86	0.47	2.31	

Table S4. The photoluminescence quantum yields of (Eu-HFA)@LA, (Tb-HFA)@LA and (Eu₁Tb₉₉-HFA)@LA.

	(Eu-HFA)@LA	(Tb-HFA)@LA	(Eu1Tb99-HFA)@LA
Φ	23%	28%	26%

The quantum yield of the resulting hybrid materials can be up to 23% for (Eu-HFA)@LA, 28% for (Tb-HFA)@LA and 26% for (Eu₁Tb₉₉-HFA)@LA in solid state, respectively, as determined by using the integrating sphere.

The empirical formula suggested by Supkowski and Horrocks,^[1] Equation (1) and (2) can thus be used to calculate n_w including Eu³⁺ and Tb³⁺-containing organic-inorganic hybrids.

$$n_{w(Eu)} = 1.05(\tau_{H2O}^{-1} - \tau_{D2O}^{-1})$$
(1)
$$n_{w(Tb)} = 4.2(\tau_{H2O}^{-1} - \tau_{D2O}^{-1})$$
(2)

Therefore, the n_w can be assumed to be 2.31 for (Eu-HFA)@LA and 2.2 for (Tb-HFA)@LA.

1 Carlos LD, Ferreira RA, Bermudez VdZ, Ribeiro SJ, Lanthanide - containing light - emitting organic-inorganic hybrids: A bet on the future, *Adv. Mater.*, 2009, **21**, 509-534.