Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of *Nostoc* sp. PCC 7120

Supplement

Che Yuan¹, Hui-Zhen Li¹, Kun Tang^{1, 2}, Wolfgang Gärtner², Hugo Scheer³, Ming Zhou^{1, *}, Kai-Hong Zhao^{1, *}

- 1 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470
 Mülheim, Germany
- 3 Department Biologie I, Universität München, D-80638 München, Germany

Supplementary material

(1 figures, 4 tables)

Fig. Photochemistry PAS-GAF variants. BV-PAS-GAF-1, **S1**: of (A): (B): BV-PAS-GAF-64, (C): BV-PAS-GAF-36, (D): BV-PAS-GAF-52, (E): BV-PAS-GAF-53, and (F): BV-PAS-GAF-60 (see Table S1). After recording the spectrum of each sample as isolated; its photochemistry was generally realized by an irradiation cycle of 650-420 nm, with the irradiation times specified in the inset. The 2nd irradiation at 650 nm for 30 min has been carried out to ensure saturating conditions (see materials and methods). In the case of PAS-GAF-64, an additional irradiation has been carried out at 600 nm in order to check the photoactivity of the component with an absorption band in the 600 nm range.

Table S1: Primers for site-directed variants.

Primer	Sequence	DNA
P1	5'- CTAGATCTGGTGAACATCAACGATATCACTA -3'	noo nof 1
P2	5'- ACTAAGCTTAATCTTCTTTGGCACTCATTT -3'	pas-gat-1
P3	5'- ACCGTTCCACAACAAGCTAGAAAACTC -3'	
P4	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGA -3'	pas-gat-29
P5	5'- ACTATTCCACAACAAGCTAGAAAACTCTATAG -3'	non mat 00
P6	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGA -3'	pas-gat-36
P7	5'- GCTATTCCACAACAAGCTAGAAAACTCTATAGCC -3'	noo nof 50
P8	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGATA -3'	pas-gai-52
P9	5'- GCTATTCCACAACAAGCTAGAAAACTCTATAGCC -3'	noo cof 50
P10	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATG -3'	pas-gai-53
P11	5'- TTTATTCCACAACAAGCTAGAAAACTCTATAG -3'	noo aaf 55
P12	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGA -3'	pas-gai-55
P13	5'- ACACCAAAATATATACCCTATGAAATAC -3'	non ant EC
P14	5'- TTGATGATGGCACAATGAGTCC -3'	pas-gai-so
P15	5'- GGTATTCCACAACAAGCTAGAAAACTCTATAG -3'	non gof 60
P16	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGA -3'	pas-gai-ou
P17	5'- TTCTCCCCATTACACATTGAATATATGCAGAA-3	non ant 11
P18	5'- GCTGCGAAGAACTGAGCGACTTAAATC -3	pas-gai-4 i
P19	5'- TATTATATACCCTATGAAATACGGAGCGCCTG -3'	non ant EZ
P20	5'- TGGTGATTGATGGCAGGCAATG -3'	pas-gar-57
P21	5'- CATATTCCACAACAAGCTAGAAAACTCTATAGCC -3	noo nof 50
P22	5'- GCTAGCTGGATAATTTAACCCTAAATAAGATGTAAGATA -3	μαν-yal-σσ
P23	5'- TGTTCACCAAAATATATACCCTATGAAATAC -3'	non ant Cd
P24	5'- ATGATGGCAGGCAATGAGTCCCATAA -3'	pas-gaf-61
P25	5'- CCTGCCATCATCACAAATGACTTCTGTAGAAATG -3	pas-gaf-62

P28	5'- ACCGCTCGAGTTAATCTTCTTTGGCACTCATT -3'	mutatio	ons
P27	5'- ACGCGGATCCACTATTCCCTTTCAGGTAGACC -3'	For	random
P26	5'- CACAGGCGCTCCGTATTTCATAGG -3		

Table S2: AphB(1-321) (i.e. PAS-GAF of AphB) variants. (a) site-directed mutations. (b) the unique H260Y variant and its ancestor. Following the parental protein, PAS-GAF-1 (= WT AphB(1-321), the various multiple mutants are numbered and listed in order of decaying fluorescence quantum yield (see Table S3).

PAS-GAF	Sequence variations		
Variant no.			
1	AphB(1-321)		
2	AphB(7-321/E74V/Q89R/N92D/L139R/D207T/I208V/Y263F/T270A/A288V/I301T)		
3	AphB(7-321/L37F/S100T/L139H/D207T/I208V/Y263F/N266S/I287V/A288V)		
4	AphB(7-321/E74V/I90S/N116D/L139H/D207T/I208V/Y263F/M278V)		
5	AphB(7-321/T51P/E74V/L139H/D207T/I208V/I234V/Y263F/A288V)		
6	AphB(7-321/E74V/L139H/Q181L/D207T/I208V/Y263F/A288V)		
7	AphB(7-321/S132P/K166R/D207T/I208V/Y263F/A288V)		
8	AphB(7-321/V36A/E74A/L126S/K129E/V140A/V190I/K191R/D207T/I208V/Y263F /A288V/T312A)		
9	AphB(7-321/E74V/K80E/L139H/M144V/L145P/D207T/I208V/Y263F/A288V)		
10	AphB(7-321/E74V/L139H/K141R/I159V/S206N/D207T/I208V/Y263F/A288V)		
11	AphB(7-321/L37F/V47G/E74V/L142P/K146R/V173A/D207T/I208V/Q211R/L215P /Y263H/A288V)		
12	AphB(7-321/E74V/K80E/F133S/L139H/K141R/D207T/I208V/Y263F/A288V)		
13	AphB(7-321/I28V/E74V/L139H/L142P/D207T/I208V/Y263F/A288V)		
14	AphB(7-321/E74V/D207T/I208V/Y263F/A288V)		
15	AphB(7-321/E74V/L139H/S157N/D207T/I208V/Q210R/Y263F/A288V/P294S /Q310R/T312A)		
16	AphB(7-321/E74V/H112Q/L139H/D207T/I208V/Y263F/A288V/I297M)		
17	AphB(7-321/E74V/L139H/D207T/I208V/S249G/Y263F/A288V)		
18	AphB(7-321/E74V/D108E/L139H/D207T/I208V/Y263F/A288V)		
19	AphB(7-321/E74V/E103G/L139H/D207T/I208V/I224T/Y263F/A288V)		
20	AphB(7-321/F52L/F72G/I91T/E95A/N102S/K129T/F134L/I156S/M174A/D207T /I208V/Y263F/A288V/F307L)		

- 21 AphB(7-321/E74V/S100P/H131Q/L139H/D207T/I208V/Q210R/Y263F/A288V)
- 22 AphB(7-321/E74V/L139H/K146R/I159M/D207T/I208V/Q244R/Y263F/A288V)
- 23 AphB(7-321/S106G/L139H/S206G/D207T/I208V/Y263F/K282E/A288V/T312A)
- 24 AphB(7-321/E74V/L139H/D207T/I208V/Y263F/A288V)
- 25 AphB(7-321/E74V/L139H/D207T/I208V/M264L/A288V)
- 26 AphB(7-321/F134L/D207T/I208V/A288V)
- 27 AphB(7-321/Y137F/A151V/D207T/I208V/V256F/I261L/A288V/S293T)
- 28 AphB(7-321/S114P/D207T/I208V/V256F/A288V/S293T)
- 29^a AphB(7-321/D207T/I208V/A288V)
- 30 AphB(7-321/L14V/V36A/E74V/F136S/D207T/I208V/A288V)
- 31 AphB(7-321/E74V/F96L/F136I/D207T/I208V/A288V)
- 32 AphB(7-321/L142P/E193G/D207T/I208V/V256F/A288V/S293T/I297M/T312A)
- 33 AphB(7-321/D207T/I208V/V256F/A288V/S293T)
- 34 AphB(7-321/E74V/D207T/I208V/Y263H/A288V)
- 35 AphB(7-321/L126S/Q162R/D207T/I208V/S276P/A288V)
- 36^a AphB(7-321/D207T/A288V)
- 37 ^b AphB(7-321/E74V/D207H/I208T/Y263F/A288V)
- 38 AphB(7-321/E74V/L139H/D207T/I208V/M264L/A288V)
- 39 AphB(7-321/E74V/S127L/D207T/I208V/A288V)
- 40 AphB(7-321/Q61R/L126S/S132L/D207T/I208V/A288V)
- 41^a AphB(7-321/D207A/V256F/A288V)
- 42 AphB(7-321/E74V/Y137F/A151V/D207T/I208V/V256F/I261L/K281R/A288V/S293T)
- 43 AphB(7-321/E74V/C82W/I105T/K129R/L139R/D207T/I208V/L259S/Y263F/A288V)
- 44 AphB(7-321/D207A/V256F/A288V/E306A)
- 45 AphB(7-321/E74V/L195M/T196Q/D207H/I208T/Y216H/Y263F/A288V)
- 46 AphB(7-321/S15C/E74V/L139H/D207T/I208V/Y263F/A288V)
- 47 AphB(7-321/E74V/D207T/I208V/A288V)
- 48 AphB(7-321/P59S/H101Y/A111V/D128G/D207A/A288V/K295R)
- 49 AphB(7-321/N115D/K129E/F136V/H138L/L139R/I187M/D207A/A288V)

- 50 AphB(7-321H138L/L139R/D207A/A288V)
- 51 AphB(7-321/I90F/T130A/H138L/L139R/N183I/D207A/A288V)
- 52^a AphB(7-321/D207A/A288V)
- 53^a AphB(7-321/D207H/A288V)
- 54 AphB(7-321/F136L/D207A/L221Q/A288V/K295T)
- 55^a AphB(7-321/D207F/A288V)
- 56 ^a AphB(7-321/D207A/S293T)
- 57^a AphB(7-321/D207H/K295Y)
- 58^a AphB(7-321/D207H)
- 59 AphB(7-321/E86G/L126S/F136L/D207A/L221Q/K228N/N280D/A288V/K295T)
- 60^a AphB(7-321/D207G/A288V)
- 61^a AphB(7-321/D207H/Q292C)
- 62^a AphB(7-321/D207A/A288V/E306A)
- 63 AphB(7-321/E74V/D207W/I208T/Y263F/A288V)
- 64 ^b AphB(7-321/E74V/D207H/I208T/H260Y/Y263F/A288V)
- 65 AphB(7-321/E74V/D207T/I208V/Y263W/A288V)

Table S3: Quantitative absorption and fluorescence data of near infrared fluorescent biliproteins derived from PAS-GAF of AphB. Spectra in KPB (20 mM, pH 7.0) containing 0.5 M NaCl were obtained after purification by Ni²⁺ affinity chromatography. Unless otherwise stated, the fluorescence spectra were obtained under excitation at 600 nm. Transients were fitted with a bi-exponential sequential model. (a) site-directed mutations. (b) the unique H260Y variant and its ancestor. (c) fluorescence emission spectrum obtained under excitation at 640 nm. (d) brightness of the BV-variants relative to that of wt BV-PAS-GAF-1 ($\epsilon \cdot \Phi_{fl} = 1.5 \text{ mM}^{-1}\text{cm}^{-1}$).

	Abs	orption			F	luoresce	nce
BV-PAS-GAF	λ_{max}	ε •10 ⁻⁴	λ_{max}	æ	Stokes	Bright-	Life time [ns]
variant no.	[nm]	[M ⁻¹ cm ⁻¹]	[nm]	Φ_{fl}	[nm]	less [%]	$τ_1$ (%), $τ_2$ (%); χ^2
1	697	6.4	721	0.023	24	100	0.48(97.7), 3.0(2.3); 1.86
2	693	8.1	717	0.060	24	330	0.62(98.1), 4.0(1.9); 1.94
3	691	7.7	717	0.060	26	314	0.61(97.6), 3.4(2.4); 1.81
4	693	8.1	717	0.059	24	325	0.62(98.2), 3.9(1.8); 2.11
5	693	7.9	717	0.057	24	306	0.61(98.0), 3.7(2.0); 1.84
6	693	8.0	718	0.057	25	310	0.61(97.6), 3.3(2.4); 2.15
7	693	8.0	717	0.057	24	310	0.61(98.1), 4.1(1.9); 1.82
8	693	7.9	718	0.057	25	306	0.60(98.1), 4.1(1.9); 1.86
9	693	8.4	717	0.057	24	326	0.61(97.8), 3.4(2.2); 2.00
10	694	8.1	718	0.057	24	314	0.60(97.8), 3.6(2.2); 1.84
11	693	7.9	717	0.056	24	301	0.59(97.9), 3.6(2.1); 1.85
12	693	7.9	717	0.056	24	301	0.62(98.1), 3.8(1.9); 2.00
13	693	8.1	716	0.056	23	308	0.61(97.8), 3.5(2.2); 2.16
14	693	8.2	718	0.056	25	312	0.60(98.6), 5.4(1.4); 1.83
15	693	8.6	718	0.055	25	321	0.60(97.8), 3.4(2.2); 2.05
16	693	9.2	718	0.055	25	344	0.60(97.4), 3.2(2.6); 1.61

17	693	7.7	718	0.055	25	288	0.60(98.1), 3.9(1.9); 2.02
18	693	8.4	717	0.054	24	308	0.61(97.7), 3.2(2.3); 1.67
19	692	7.7	718	0.054	26	283	0.59(97.3), 3.0(2.7); 1.56
20	695	9.6	718	0.053	23	346	0.61(98.0), 3.6(2.0); 2.02
21	693	8.7	717	0.053	24	314	0.61(98.3), 4.2(1.7); 1.63
22	693	8.4	717	0.052	24	297	0.61(98.1), 4.1(1.9); 1.92
23	695	7.4	719	0.052	24	262	0.58(98.0), 4.0(2.0); 1.90
24	693	8.9	718	0.051	25	308	0.61(97.0), 3.0(3.0); 1.58
25	694	7.4	719	0.051	25	257	0.58(98.1), 3.7(1.9); 2.17
26	694	7.4	718	0.051	24	257	0.56(98.2), 4.4(1.8); 1.94
27	694	7.3	719	0.050	25	248	0.55(98.4), 5.6(1.6); 1.83
28	692	7.2	718	0.050	26	245	0.55(98.7), 5.9(1.3); 1.76
29 ^a	694	7.0	718	0.050	24	238	0.57(98.0), 4.1(2.0); 1.65
30	694	7.3	718	0.050	24	248	0.56(98.7), 6.0(1.3); 1.75
31	694	7.6	719	0.050	25	258	0.56(98.7), 6.3(1.3); 1.80
32	693	7.5	717	0.049	24	250	0.54(98.7), 5.8(1.3); 1.81
33	693	7.3	719	0.049	26	243	0.54(98.7), 5.4(1.3); 1.75
34	693	6.9	720	0.049	27	230	0.59(95.8), 2.4(4.2); 1.71
35	694	7.2	719	0.049	25	240	0.55(98.6), 5.4(1.4); 1.80
36 ^a	695	7.0	719	0.049	24	233	0.59(98.0), 4.1(2.0); 1.51
37 ^b	693	7.0	719	0.048	26	228	0.59(97.6), 3.6(2.4); 1.70
38	694	6.7	719	0.048	25	219	0.57(98.6), 5.5(1.4); 1.73
39	694	7.3	719	0.048	25	238	0.56(98.6), 5.5(1.4); 1.78
40	694	7.6	718	0.048	24	248	0.58(98.5), 5.0(1.5); 1.48
41 ^a	697	7.0	721	0.048	24	228	0.53(98.2), 4.5(1.8); 1.70
42	694	7.4	719	0.048	25	242	0.57(98.1), 3.9(1.9); 1.60
43	692	8.7	717	0.047	25	278	0.57(97.2), 3.4(2.8); 2.06
44	696	7.0	720	0.047	24	224	0.53(98.4), 4.7(1.6); 1.81
45	692	7.2	719	0.047	27	230	0.60(97.8), 3.9(2.2); 1.67

46	693	9.2	717	0.047	24	294	0.57(96.0), 2.5(4.0); 2.34
47	694	7.3	720	0.047	26	233	0.55(98.7), 6.3(1.3); 1.72
48	698	8.3	721	0.046	23	260	0.55(98.7), 5.9(1.3); 1.77
49	699	8.3	721	0.046	22	260	0.54(98.6), 5.8(1.4); 1.70
50	698	6.8	722	0.045	24	208	0.54(97.7), 5.1(2.3); 1.86
51	700	7.9	722	0.045	22	242	0.52(98.2), 4.4(1.8); 1.83
52 ^a	698	7.6	722	0.045	24	232	0.55(98.0), 4.0(2.0); 1.56
53 ^a	698	7.2	722	0.044	24	215	0.56(98.0), 5.8(2.0); 1.62
54	698	7.9	720	0.044	22	236	0.52(98.4), 1.1(1.6); 1.81
55 ^a	699	6.2	723	0.043	24	181	0.58(97.5), 6.8(2.5); 1.69
56 ^a	700	7.2	723	0.042	23	206	0.56(98.4), 4.4(1.6); 1.48
57 ^a	699	7.3	722	0.042	23	208	0.54(98.5), 5.4(1.5); 1.75
58 ^a	699	6.4	722	0.041	23	178	0.54(98.1), 5.2(1.9); 1.89
59	697	7.0	720	0.041	23	195	0.57(97.8), 3.6(2.2); 2.15
60 ^a	701	6.4	723	0.040	22	174	0.54(98.2), 4.8(1.8); 1.69
61 ^a	699	6.5	722	0.039	23	172	0.54(98.4), 5.9(1.6); 1.73
62 ^a	697	6.7	722	0.039	25	178	0.53(98.0), 3.4(2.0); 1.81
63	689	6.2	717	0.036	28	152	0.46(94.6), 1.8(5.4); 1.97
64 ^b	606/ 692	2.2	648/7 12	0.031	20	46	0.27(96.7), 8.4(3.3); 2.28
65	703	7.1	724	0.025	21	121	0.36(94.2), 1.3(5.8); 1.94
64 ^{b,c}	606/ 692	2.2	718	0.017	26	25	0.27(96.8), 9.1(3.2); 2.39

Table S4: Plasmids used. The pET30 and pACYCDuet, from Novagen, are T7 promoter expression vectors. pACYCDuet is designed to co-express two target proteins in *E. coli*. Using the two vector-derivatives together with compatible replicons and antibiotic resistance, 3 proteins could be co-expressed in the same cell, thereby generating the respective BV-variants in *E. coli*.

Antibiotic	Plasmids with P15A replicon	Plasmids with ColE1 replicon
resistance	pACYCDuet derivatives	pET30 derivatives
		pET-pas-gaf-1
		pET- <i>pas-gaf-2</i>
		pET- <i>pas-gaf-3</i>
		pET- <i>pas-gaf-4</i>
		pET- <i>pas-gaf-5</i>
		pET- <i>pas-gaf-</i> 6
		pET- <i>pas-gaf-7</i>
		pET- <i>pas-gaf-8</i>
		pET- <i>pas-gaf-9</i>
		pET- <i>pas-gaf-10</i>
Kanamycin		pET- <i>pas-gaf-11</i>
Ranamyen		pET- <i>pas-gaf-12</i>
		pET- <i>pas-gaf-13</i>
		pET- <i>pas-gaf-14</i>
		pET- <i>pas-gaf-15</i>
		pET- <i>pas-gaf-16</i>
		pET- <i>pas-gaf-17</i>
		pET- <i>pas-gaf-18</i>
		pET- <i>pas-gaf-19</i>
		pET- <i>pas-gaf-20</i>
		pET- <i>pas-gaf-21</i>
		pET- <i>pas-gaf-</i> 22

	pET- <i>pas-gaf-</i> 23
	pET- <i>pas-gaf-24</i>
	pET- <i>pas-gaf-</i> 25
	pET- <i>pas-gaf-</i> 26
	pET- <i>pas-gaf-</i> 27
	pET- <i>pas-gaf-</i> 28
	pET- <i>pas-gaf-29</i>
	pET- <i>pas-gaf-30</i>
	pET- <i>pas-gaf-31</i>
	pET- <i>pas-gaf-3</i> 2
	pET- <i>pas-gaf-33</i>
	pET- <i>pas-gaf-34</i>
	pET- <i>pas-gaf-35</i>
	pET- <i>pas-gaf-3</i> 6
	pET- <i>pas-gaf-37</i>
	pET- <i>pas-gaf-38</i>
	pET- <i>pas-gaf-3</i> 9
	pET- <i>pas-gaf-40</i>
	pET- <i>pas-gaf-41</i>
	pET- <i>pas-gaf-4</i> 2
	pET- <i>pas-gaf-43</i>
	pET- <i>pas-gaf-44</i>
	pET- <i>pas-gaf-45</i>
	pET- <i>pas-gaf-46</i>
	pET- <i>pas-gaf-47</i>
	pET- <i>pas-gaf-48</i>
	pET- <i>pas-gaf-49</i>
	pET- <i>pas-gaf-50</i>
	pET- <i>pas-gaf-51</i>

		pET- <i>pas-gaf-5</i> 2
		pET- <i>pas-gaf-53</i>
		pET- <i>pas-gaf-54</i>
		pET- <i>pas-gaf-55</i>
		pET- <i>pas-gaf-5</i> 6
		pET- <i>pas-gaf-57</i>
		pET- <i>pas-gaf-58</i>
		pET- <i>pas-gaf-59</i>
		pET- <i>pas-gaf-60</i>
		pET- <i>pas-gaf-61</i>
		pET- <i>pas-gaf-6</i> 2
		pET- <i>pas-gaf-</i> 63
		pET- <i>pas-gaf-64</i>
		pET- <i>pas-gaf-65</i>
Chloramphenicol	pACYC-ho1	