Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Journal Name

ARTICLE

A Convenient Synthesis Strategy for Microphase-Separating Functional Copolymers: The Cyclohydrocarbosilane Tool Box

V. Rittscher, M. Gallei*

Supporting information

Tab. S1 Comparison of molar masses for PMSB homopolymers. Anionic ring-opening polymerization of MSB monomer was carried out using *n*-butyllithium as initiator and THF as solvent at -78 °C (No 1-3). Reaction No 4 was performed using *n*-hexane as solvent instead of THF.

No	n-BuLi (μmol)	Yield (%)	M_n^a (g mol ⁻¹)	M _w ^a (g mol ⁻¹)	Đ
1	15	94 (2h)	20 100	31 600	1.57
2	50	87 (1h)	21 300	34 200	1.60
3	10	99 (5 min)	21 600	35 300	1.63
4	10	86 (5 min)	22 500	41 400	1.84

^aMolar masses determined by usingSEC measurements with PS calibration

Fig. S2 Molar mass distribution of PS-*b*-PMSB3 (red) and the corresponding PS macroinitiator (black) obtained by using SEC measurement with PS calibration.

Fig. S5 $^1\mathrm{H}$ NMR spectrum of NVC@PMSB1 (room temperature, deuterated chloroform).

Fig. S7 $^1\mathrm{H}$ NMR spectrum of VADN@PMSB1 (room temperature, deuterated methylene chloride).

Fig. S8 DSC thermogram of NVC@PMSB.

1,0

0,8

0,4

0,2

0,0

10000

Normalized Intensity (a.u.) 0,6 -

PS standards).

Fig. S11 Molar mass distribution of NVC@PS-b-PMSB1 (THF, measurement vs. PS standards).

100000

Molar mass (g mol⁻¹)

Fig. S12 Molar mass distribution of VFc@PS-b-PMSB1 (THF, measurement vs.

Fig. S13 Molar mass distribution of VADN@PS-b-PMSB1 (THF, measurement vs. PS standards).

Fig. S14 Stacked DSC thermograms of NVC@PS-b-PMSB 1 (pink), VFc@PS-b-PMSB 1 (blue), and VADN@PS-b-PMSB1 (red).

Fig. S15 ¹H NMR spectrum of NVC@PS-b-PMSB1 precipitated in methanol and left to stir for further 30 min. While the highlighted signals (green and orange) correspond to the expected functionalized hydrosilylated polymer (product B of Fig. 5) the signal at 3.40 ppm can be assigned to a methylsilylether group (byproduct C Fig. 5)

Fig. 17 Exemplary TGA curve for VFc@PMSB1 under argon (heating rate 10 K min^1)

Fig. 18 X-ray diffraction (XRD) pattern of ceramic material obtained by ceramization of VFc@PMSB1 under inert conditions showing a mixture of Fe₃Si₅, Fe₃Si, SiC, and graphite.