Supporting Information

Impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donoracceptor copolymers

Ranbir Singh,¹ Georgia Pagona,^{2,3} Vasilis G. Gregoriou,^{2,3} Nikos Tagmatarchis,³ Dimosthenis Toliopoulos,¹ Yang Han,⁴ Zhuping Fei,⁴ Athanasios Katsouras,⁵ Apostolos Avgeropoulos,⁵ Thomas D. Anthopoulos,⁶ Martin Heeney,⁴ Panagiotis E. Keivanidis,⁷* Christos L. Chochos^{2,5}*

- 1. Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy.
- 2. Advent Technologies SA, Patras Science Park, Stadiou Street, Platani-Rio, 26504, Patra, Greece. E-mail: <u>cchochos@advent-energy.com</u>
- 3. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
- 4. Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Exhibition Road, South Kensington, London SW7 2AY, UK.
- 5. Department of Materials Science Engineering, University of Ioannina, Ioannina 45110, Greece. E-mail: <u>cchochos@cc.uoi.gr</u>
- 6. Department of Physics and Centre for Plastic Electronics, Imperial College London, Exhibition Road, South Kensington, London SW7 2AY, UK.
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Dorothea Bldg, 5th floor, 45 Kitiou Kyprianou Str., Limassol 3041, Cyprus. E-mail: <u>p.keivanidis@cut.ac.cy</u>

Figure S1. Isomeric structures of the most common electron rich building blocks for the synthesis of D-A conjugated polymers.

Figure S2. Thermogravimetric analysis graphs of the TQ1, T23TQ and T32TQ under a nitrogen atmosphere.

Dihedral angles

θ1	θ2	θ3	θ4	θ5	θ6	θ7
28.56°	13.63°	22.38°	4.18°	10.72°	29.87°	26.12°

Figure S3. Calculated dihedral angles for the tetramer model compounds of TQ1 (up), T23TQ (middle) and T32TQ (bottom).

Figure S4. Thin film absorption spectra of (a) TQ1:PC₇₀BM, (b) T23TQ:PC₇₀BM and (c) T32TQ:PC₇₀BM in three different composition ratio (1:1, 1:2 and 1:3).

Cyclic Voltammetry of PCBM

 $E_{LUMO}^{PCBM} = -(5.10 - 1.20) \text{ eV} = -3.90 \text{ eV}$

Figure S5. Cyclic voltamograph of PC₆₀BM in ortho-dichlorobenzene solution and estimation of the ELUMO of PC₆₀BM from the corresponding first reduction potential.

Figure S6. DFT [B3LYP/6-31G(d,p)] calculated frontier molecular orbitals of the HOMO (bottom) and LUMO (top) for the tetramers of TQ1, T23TQ and T32TQ.

Figure S7. Dark J-V curves of hole-only devices (a-c) and electron-only devices (d-f) for pristine TQ1 (black square), TQ1:PC₇₀BM 1:1 (red circle), 1:2 (blue up-triangle), 1:3 (pink down-triangle) composition ratio, pristine T23TQ (black square), T23TQ:PC₇₀BM 1:1 (red circle), 1:2 (blue up-triangle), 1:3 (pink down-triangle) composition ratio, and pristine T32TQ (black square), T32TQ:PC₇₀BM 1:1 (red circle), 1:2 (blue up-triangle) and 1:3 (pink down-triangle) composition ratio.

Figure S8. The basic figures of merit (V_{oc}, Jsc, FF and PCE) for the polymer:PC₇₀BM OPV devices as a function of the polymer:PC₇₀BM composition ratio (1:1, 1:2 and 1:3).

Figure S9. ¹H-NMR spectra (400 MHz) of TQ1, T23TQ and T32TQ in CDCl₃.

Figure S10. GPC chromatographs of TQ1, T23TQ and T32TQ.

Blend System	$J_{sc} (mA/cm^2)$	J _{sc} (mA/cm ²) calculated from EQE spectrum	Sun used
TQ1:PC ₇₀ BM (1:1)	7.5 ± 0.32	6.8 ± 0.24	0.98
TQ1:PC ₇₀ BM (1:2)	8.6 ± 0.19	7.3 ± 0.15	0.98
TQ1:PC ₇₀ BM (1:3)	9.4 ± 1.45	7.8 ± 0.51	0.98
T23TQ:PC ₇₀ BM (1:1)	8.5 ± 0.02	6.6 ± 0.17	0.98
T23TQ:PC ₇₀ BM (1:2)	9.6 ± 0.02	6.9 ± 0.06	0.98
T23TQ:PC ₇₀ BM (1:3)	8.5 ± 0.17	5.5 ± 0.18	0.98
T32TQ:PC ₇₀ BM (1:1)	7.8 ± 0.06	6.8 ± 0.03	0.98
T32TQ:PC ₇₀ BM (1:2)	8.1 ± 0.65	7.1 ± 0.20	0.98
T32TQ:PC ₇₀ BM (1:3)	6.9 ± 0.58	5.7 ± 0.05	0.98

Table S1. The obtained current densities and the calculated current densities from EQE of all the systems are presented.