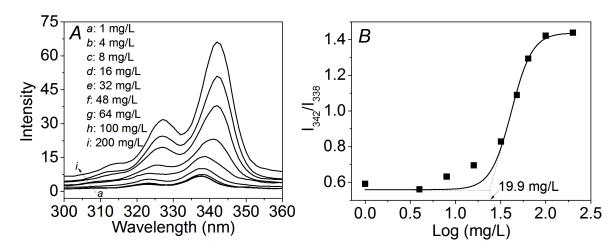
Electronic Supplementary	/ Material ((ESI) for Pol	ymer Chemistry.
This journal is © The Roy	al Society	of Chemistr	y 2015

Supporting Information

of

Self-assembled micelles of multi-functional amphiphilic fusion (MFAF) peptide for targeted cancer therapy

Yin-Jia Cheng, Hong Cheng, Xiao-Ding Xu,* Ren-Xi Zhuo and Feng He*


Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan

University, Wuhan 430072, P. R. China

15

5

20 *Corresponding author. E-mail address: xd-xu@whu.edu.cn; hefeng@whu.edu.cn

Fig. S1. (*A*) Fluorescent excitation spectra of pyrene with increasing concentration of the MFAF peptide; (*B*) The intensity of I_1 , I_3 in the excitation spectra as a function of logarithm of the concentration of the MFAF peptide.

5

Fig. S2. Molecular structures of the different azide-terminated functional peptides (azide-GFLGR $_8$, azide-GGGGR $_8$ GDS and azide-GGGGR $_8$).

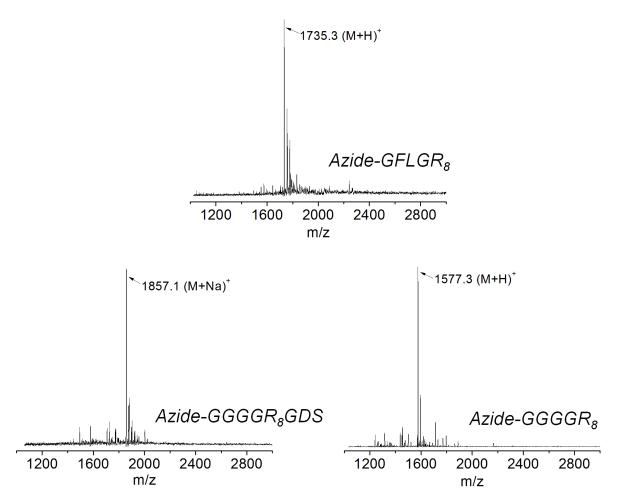


Fig. S3. MALDI-TOF-MS spectra of the azide-terminated functional peptides (azide-GFLGR $_8$, azide-GGGGR $_8$ GDS and azide-GGGGR $_8$).

Fig. S4. Molecular structures of the different amphiphilic functional peptides (PCL-GFLGR₈, PCL-GGGGR₈).

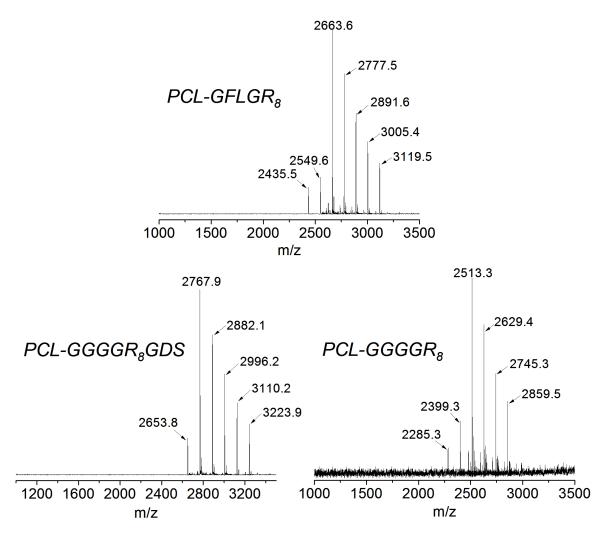


Fig. S5. MALDI-TOF-MS spectra of the different amphiphilic functional peptides (PCL-GFLGR $_8$, PCL-GGGGR $_8$ GDS and PCL-GGGGR $_8$).