Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for:

Dendronized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance

Runli Tang,^{*a*} Hong Chen,^{*a*} Shengmin Zhou,^{*a*} Wendi Xiang,^{*a*} Xi Tang,^{*b*} Binwen Liu,^{*c*} Yongqiang Dong,^{*b*} Huiyi Zeng,^{*c*} and Zhen Li^{**a*}

^a Department of Chemistry, Wuhan University, Wuhan 430072, China. E-mail: lizhen@whu.edu.cn; lichemlab@163.com; Fax: (+86) 27 68755363

^b Department of Chemistry, Beijing Normal University, Beijing 100875, China.

^c Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou 350002, China.

Synthesis

Materials

Tetrahydrofuran (THF) was dried over Na-K alloy and distilled under an atmosphere of dry nitrogen. *N*, *N*-Dimethylform amide (DMF) was dried over CaH_2 and distilled under an atmosphere of dry nitrogen. Compounds **R1-R6** were prepared according to literatures and our previous work¹⁻⁴. All other reagents were used as received.

1. W. Wu, Z. Li, Polym. Chem., 2014, 5, 5100-5108

2. Z. Li, C. Li, G. Yu, Y. Liu, C. Ye, J. Qin, Z. Li, Chem. Eur. J. 2012, 18, 11019-11028.

3. Z. Li, G. Yu, P. Hu, C. Ye, Y. Liu, J. Qin, Z. Li, *Macromolecules*, 2009, 42, 1589-1596.

4. J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen. Polym. Int., 2008, 57: 965-974.

Scheme S1. The synthetic route to related compounds

Compound 1: Compound R1 (638.0 mg, 2.0 mmol), and N-(2-chloroethyl)-N-ethylaniline (367.3 mg,

2.0 mmol) were dissolved in DMF (8 mL), the resultant mixture was allowed to stir at 0 $^{\circ}$ C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, and purified by column chromatography using ethyl acetate/petroleum ether (1/5) as eluent to yield red solid (680.0 mg, 82.0 %). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.26 (t, *J*=7.2 Hz, 3H, -CH₃), 2.00 (s, 1H, -C=CH), 2.15 (m, 2H, -CH₂-), 2.50 (m, 2H, -CH₂-), 3.57 (m, 2H, -CH₂-), 3.70 (m, 2H, -CH₂-), 3.76 (m, 2H, -CH₂-), 4.35 (t, *J*=6.0 Hz, 2H, -CH₂-), 6.78 (d, *J*=9.0 Hz, 2H, -ArH), 7.69 (d, *J*=8.7 Hz, 1H, -ArH), 7.92 (m, 4H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), δ (ppm): 155.30, 150.57, 148.46, 147.22, 144.85, 126.50, 117.63, 116.84, 111.55, 109.44, 83.43, 69.45, 68.31, 52.45, 46.13, 40.33, 28.26, 15.37, 12.76.

Compound **2**: Compound **R2** (300.0 mg, 0.93 mmol), and *N*-(2-chloroethyl)-*N*-ethylaniline (170.7 mg, 0.93 mmol) were dissolved in DMF (5 mL), the resultant mixture was allowed to stir at 0 °C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, and purified by column chromatography using ethyl acetate/petroleum ether (1/5) as eluent to yield orange solid (250.0 mg, 64.4 %). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.27 (t, *J*=7.2 Hz, 3H, -CH₃), 1.99-1.94 (m, 3H, -C=CH, -CH₂-), 2.33 (m, 2H, -CH₂-), 3.27 (t, *J*=8.1 Hz, 3H, -CH₃), 3.56 (q, *J*=7.2 Hz, 2H, -CH₂-), 3.67 (t, *J*=6.0 Hz, 2H, -CH₂-), 3.76 (t, *J*=6.0 Hz, 2H, -CH₂-), 6.77 (d, *J*=9.3 Hz, 2H, -ArH), 7.91 (d, *J*=9.3 Hz, 2H, -ArH), 8.02-7.95 (m, 4H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), δ (ppm): 156.58, 150.72, 144.13, 138.61, 129.53, 126.40, 123.09, 111.62, 82.07, 70.52, 55.37, 52.48, 46.16, 40.43, 22.02, 17.56, 12.79

Scheme S2. The two synthetic routes to Mon-NN

Mon-NN was prepared through two different synthetic routes as following:

Route 1:

Compound **3**: Compound **1** (348.5 mg, 0.84 mmol), *N*,*N*-bis(2-azidoethyl)aniline (92.5 mg, 0.40 mmol), CuSO₄ • 5H₂O (10 mol %), NaHCO₃ (20 mol %), and ascorbic acid (20 mol %) were dissolved in DMF (12 mL)/H₂O (2.4 mL) in a Schlenk flask under nitrogen. The mixture was stirred at room temperature for 3 h, then extracted with chloroform, and washed with 1N HCl, 1N NH₄OH, and water subsequently. The organic layer was dried over anhydrous magnesium sulfate. After removal of the solvent, the crude product was purified by column chromatography using dichloromethane/ethyl acetate (4/1) as eluent to afford red solid (329.1 mg, 77.6%). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.24 (t, *J*=6.9 Hz, 6H, -CH₃), 2.23 (m, 4H, -CH₂-), 2.94 (m, 4H, -CH₂-), 3.52 (t, *J*=6.9 Hz, 4H, -CH₂-), 3.67-3.61 (m, 8H, -CH₂-), 3.72 (t, *J*=6.9 Hz, 4H, -CH₂-), 4.15 (t, 4H, -CH₂-), 4.30 (t, 4H, -CH₂-), 6.53 (d, *J*=6.3 Hz, 2H, -ArH), 6.76 (d, *J*=9.0 Hz, 4H, -ArH), 7.13 (s, 2H, -ArH), 7.18 (m, 1H, -ArH), 7.66 (d, *J*=9.0 Hz, 2H, -ArH), 7.99 (s, 2H, -ArH). 7.89-7.84 (m, 5H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (ppm): 155.29, 150.69, 148.43, 147.23, 146.03, 144.84, 130.04, 126.54, 122.47, 118.57, 117.67, 116.78, 113.05, 111.64, 109.43, 68.78, 52.44, 51.79, 47.62, 46.15, 40.42, 28.74, 22.05, 12.77.

Compound **4**: Compound **3** (400.0 mg, 0.37 mmol), NaN₃ (152.5 mg, 2.34 mmol) and DMF (13 mL) were added into a flask, the resultant mixture was allowed to stir at 80 °C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, dried under vacuum, and purified by column chromatography using ethyl dichloromethane/ethyl acetate (4/1) as eluent to yield red solid (459.0 mg, 91.6%).¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.24 (t, *J*=6.9 Hz, 6H, -CH₃), 2.24 (m, 4H, -CH₂-), 2.95 (m, 4H, -CH₂-), 3.62-3.53 (m, 16H, -CH₂-), 4.15 (t, *J*=6.0 Hz, 4H, -CH₂-), 4.29 (t, *J*=6.0 Hz, 4H, -CH₂-), 6.53 (d, *J*=7.8 Hz, 2H, -ArH), 6.78 (d, *J*=9.3 Hz, 4H, -ArH), 7.13 (s, 2H, -ArH), 7.18 (m, 1H, -ArH), 7.64 (d, *J*=9.0 Hz, 2H, -ArH), 7.79 (s, 2H, -ArH). 7.89-7.84 (m, 5H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (ppm): 155.25, 150.83, 148.36, 147.19, 145.99, 144.75, 130.00, 126.51, 122.44, 118.67, 117.61, 116.75, 112.97, 111.70, 109.37, 68.73, 51.76, 49.74, 49.14, 47.58, 46.09, 28.72, 22.04, 12.50.

Mon-NN: Compound **4** (132.0 mg, 0.12 mmol), and **R3** (29.2 mg, 0.12 mmol) were dissolved in DMF (6 mL), the resultant mixture was allowed to stir at 0 $^{\circ}$ C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, and purified by column chromatography using dichloromethane/ethyl acetate (2/1) as eluent to yield orange solid (122.0 mg,

82.5 %). HRMS (ESI, m/z): $[M+H]^+$ calcd for C₅₈H₆₃N₂₄O₈, 1223.5260; found, 1223.5240. (EA) (%, found/Calcd): C, 56.84/56.95; H, 4.93/5.11; N, 27.13/27.48. ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.25 (t, *J*=6.6 Hz, 6H, -CH₃), 2.24 (m, 4H, -CH₂-), 2.96 (m, 4H, -CH₂-), 3.60-3.53 (m, 12H, -CH₂-), 3.73 (br, 4H, -CH₂-), 4.12 (t, *J*=5.7 Hz, 4H, -CH₂-), 4.37 (br, 4H, -CH₂-), 6.55 (d, *J*=9.0 Hz, 2H, -ArH), 6.77 (d, *J*=8.7 Hz, 4H, -ArH), 7.23 (s, 2H, -ArH), 7.65 (d, *J*=9.0 Hz, 2H, -ArH), 7.75 (m, 4H, -ArH), 7.88-7.84 (m, 6H, -ArH), 8.29 (d, *J*=8.7 Hz, 2H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (ppm): 156.22, 155.16, 150.83, 149.62, 148.24, 147.85, 147.37, 147.11, 144.79, 144.64, 126.46, 126.23, 124.80, 123.05, 122.62, 117.54, 116.73, 111.82, 111.64, 109.34, 68.68, 51.37, 49.70, 49.09, 47.44, 46.02, 28.54, 22.00, 12.45.

Route 2:

1-NN: Compound **1** (227.4 mg, 0.54 mmol), **R4** (99.2 mg, 0.26 mmol), CuSO₄ $5H_2O$ (10 mol %), NaHCO₃ (20 mol %), and ascorbic acid (20 mol %) were dissolved in DMF (20 mL)/H₂O (1.0 mL) in a Schlenk flask under nitrogen. The mixture was stirred at room temperature for 3 h, then extracted with chloroform, and washed with 1N HCl, 1N NH₄OH and water subsequently. The organic layer was dried over anhydrous magnesium sulfate. After removal of the solvent, the crude product was purified by column chromatography using dichloromethane/ethyl acetate (4/1) as eluent to afford red solid (272.7 mg, 86.3 %). This compound was directly used in the next step.

Mon-NN: 1-NN (252.7 mg, 0.21 mmol), NaN₃ (81.4 mg, 1.25 mmol) and DMF (8 mL) were added into a flask, the resultant mixture was allowed to stir at 80 °C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, dried under vacuum, and purified by column chromatography using dichloromethane/ethyl acetate (2/1) as eluent to yield red solid (249.3 mg, 97.5%). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.25 (t, *J*=6.6 Hz, 6H, -CH₃), 2.24 (m, 4H, -CH₂-), 2.96 (m, 4H, -CH₂-), 3.60-3.53 (m, 12H, -CH₂-), 3.73 (br, 4H, -CH₂-), 4.12 (t, *J*=5.7 Hz, 4H, -CH₂-), 4.37 (br, 4H, -CH₂-), 6.55 (d, *J*=9.0 Hz, 2H, -ArH), 6.77 (d, *J*=8.7 Hz, 4H, -ArH), 7.23 (s, 2H, -ArH), 7.65 (d, *J*=9.0 Hz, 2H, -ArH), 7.75 (m, 4H, -ArH), 7.88-7.84 (m, 6H, -ArH), 8.29 (d, *J*=8.7 Hz, 2H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (ppm): 156.22, 155.16, 150.83, 149.62, 148.24, 147.85, 147.37, 147.11, 144.79, 144.64, 126.46, 126.23, 124.80, 123.05, 122.62, 117.54, 116.73, 111.82, 111.64, 109.34, 68.68, 51.37, 49.70, 49.09, 47.44, 46.02, 28.54, 22.00, 12.45.

In *Route 1*, azo-coupling reaction as the final step with relatively low yield, with low atom economy, while *Route 2* behaved better. Thus, the synthesis of *Mon-NS* and *Mon-SS* was through *Route 2*.

Scheme S3. The synthetic route to Mon-NS and Mon-SS

1-NS: Compound **R4** (305.8 mg, 0.73 mmol), **R5** (150.4 mg, 0.35 mmol), CuSO₄ 5H₂O (10 mol %), NaHCO₃ (20 mol %), ascorbic acid (20 mol %), DMF (20 mL)/H₂O (1.0 mL), 3 h, red solid (416.5 mg, 94.3 %). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.33-1.22 (m, 9H, -CH₃), 2.24 (m, 4H, -CH₂-), 2.96 (t, *J*=6.9 Hz, 4H, -CH₂-), 3.15 (m, 2H, -CH₂-), 3.53 (m, 4H, -CH₂-), 3.73-3.65 (m, 12H, -CH₂-), 4.14 (t, *J*=6.0 Hz, 4H, -CH₂-), 4.37 (br, 4H, -CH₂-), 6.57 (d, *J*=8.4 Hz, 2H, -ArH), 6.74 (d, *J*=9.0 Hz, 4H, -ArH), 7.21 (s, 2H, -ArH), 7.63 (d, *J*=9.0 Hz, 2H, -ArH), 7.88-7.77 (m, 8H, -ArH), 8.00-7.91 (m, 6H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (TMS, ppm): 155.71, 154.93, 150.39, 149.16, 148.06, 147.10, 146.88, 144.56, 144.48, 138.37, 129.14, 126.21, 125.87, 122.83, 122.24, 117.33, 116.46, 111.65, 111.32, 109.13, 68.47, 52.10, 51.12, 50.62, 47.12, 45.80, 40.11, 28.31, 21.74, 12.43, 7.37.

Mon-NS: **1-NS** (377.1 mg, 0.3 mmol), NaN₃ (135.3 mg, 2.08 mmol), DMF (15 mL), red solid (376.4 mg, 98.7%). HRMS (ESI, m/z): $[M+H]^+$ calcd for C₆₀H₆₈N₂₃O₈S, 1270.5342; found, 1270.5337. (EA) (%, found/Calcd): C, 56.52/56.73; H, 5.49/5.32; N, 15.19/25.36; S, 2.75/2.52. ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.33-1.22 (m, 9H, -CH₃), 2.24 (m, 4H, -CH₂-), 2.96 (t, *J*=6.9 Hz, 4H, -CH₂-), 3.15 (m, 2H, -CH₂-), 3.53-3.59 (m, 12H, -CH₂-), 3.71 (br, 4H, -CH₂-), 4.14 (t, *J*=6.0 Hz, 4H, -CH₂-), 4.36 (br, 4H, -CH₂-), 6.57 (d, *J*=8.4 Hz, 2H, -ArH), 6.76 (d, *J*=9.0 Hz,

4H, -ArH), 7.22 (s, 2H, -ArH), 7.63 (d, *J*=9.0 Hz, 2H, -ArH), 7.88-7.77 (m, 8H, -ArH), 8.00-7.91 (m, 6H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), *δ* (ppm): 156.06, 155.25, 150.91, 149.49, 148.38, 147.45, 147.28, 144.93, 144.78, 138.74, 129.49, 126.52, 126.20, 123.16, 122.58, 117.68, 116.82, 111.99, 111.77, 109.48, 77.71, 77.29, 76.86, 68.82, 51.44, 50.95, 49.77, 49.18, 47.45, 46.09, 28.63, 22.08, 12.52, 7.70.

1-SS: Compound **1** (186.7 mg, 0.44 mmol), **R5** (90.9 mg, 0.21 mmol) , DMF (10 mL)/H₂O (0.5 mL), 3 h, orange solid (242.1 mg, 90.1 %). ¹H NMR (300 MHz, CDCl₃, 298 K), *δ* (TMS, ppm): 1.33-1.24 (m, 9H, -CH₃), 2.08 (m, 4H, -CH₂-), 2.82 (t, *J*=7.2 Hz, 4H, -CH₂-), 3.15 (m, 6H, -CH₂-), 3.54 (m, 4H, -CH₂-), 3.75-3.67 (m, 12H, -CH₂-), 4.43 (br, 4H, -CH₂-), 6.57 (d, *J*=8.4 Hz, 2H, -ArH), 6.77-6.70 (m, 8H, -ArH), 7.22 (s, 2H, -ArH), 8.00-7.88 (d, 16H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), *δ* (ppm): 156.17, 155.75, 150.43, 149.25, 146.19, 144.59, 143.75, 138.24, 129.18, 128.95, 126.06, 122.89, 122.74, 122.28, 111.85, 111.29, 55.12, 52.12, 51.24, 50.63, 47.14, 45.80, 40.11, 23.68, 22.56, 12.43, 7.40.

Mon-SS: **1-SS** (212.1 mg, 0.3 mmol), NaN₃ (65.0 mg, 1.0 mmol), DMF (15 mL), orange solid (200.7 mg, 94.1%). HRMS (ESI, m/z): $[M+H]^+$ calcd for C₆₀H₇₀N₂₁O₆S₃, 1276.4980; found, 1276.4983. (EA) (%, found/Calcd): C, 56.63/56.45; H, 5.69/5.45; N, 22.84/23.04; S, 7.48/7.54. ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 1.33-1.23 (m, 9H, -CH₃), 2.09 (m, 4H, -CH₂-), 2.83 (t, *J*=7.2 Hz, 4H, -CH₂-), 3.15 (t, *J*=6.0 Hz, 6H, -CH₂-), 3.62-3.52 (m, 12H, -CH₂-), 3.73 (br, 4H, -CH₂-), 4.44 (br, 4H, -CH₂-), 6.79-6.70 (m, 8H, -ArH), 7.22 (s, 4H, -ArH), 7.94-7.88 (m, 8H, -ArH), 8.00 (m, 4H, -ArH). ¹³C NMR (100 MHz, CDCl₃, 298 K), δ (ppm): 156.61, 156.28, 151.21, 149.90, 146.59, 144.91, 144.05, 138.63, 129.63, 129.45, 126.55, 123.39, 123.21, 122.98, 112.26, 111.90, 78.23, 77.80, 77.38, 55.65, 51.54, 51.08, 49.86, 49.33, 47.61, 46.17, 24.21, 23.08, 12.69, 7.93.

Scheme S4. The synthetic route to Mon-3Alk

Compound 5: Aniline (1.86 g, 0.02 mol) were dissolved in CH₃CN, 5-chloropent-1-yne (0.24 g, 0.02 mol), K₂CO₃ (2.763 g, 0.02 mol) and KI (0.332 g, 0.002 mol) were added then. After the reaction was stirred for 24 h at 80 °C, another batch of 1-bromohexanel (0.328 g, 0.02 mol), K₂CO₃ ((2.763 g, 0.02 mol) and KI (0.332 g, 0.002 mol) were added. The reaction continued to stir for another 24 h. The mixture was cooled into room temperature, then filtered to remove the solid, the organic layer was poured into a lot of water. The mixture was extracted with chloroform, and washed with water for several times. The organic layer was dried over magnesium sulfate. The crude product was purified by column chromatography on silica gel using chloroform/petroleum ether (1/8) as eluent to afford colorless oil (0.357 g, 72.3 %). This compound was directly used in the next step.

Compound **3Ph**: 1,3,5-Tris(azidomethyl)benzene (107.9 mg, 0.44 mmol), **5** (356.2 mg, 1.46 mmol), CuSO₄ 5H₂O (10 mol %), NaHCO₃ (20 mol %), and ascorbic acid (20 mol %) were dissolved in DMF (20 mL)/H₂O (1 mL) under nitrogen in a Schlenk flask. The mixture was stirred at 30 °C for 4 h, then extracted with chloroform, and washed with 1N HCl, 1N NH₄OH, and water subsequently. The organic layer was dried over anhydrous magnesium sulfate. After removal of the solvent, the crude product was purified by column chromatography using dichloromethane/ethyl acetate (1/3) as eluent to afford colorless oil (370.0 mg, 85.7 %). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 0.89 (m, 9H, -CH₃), 1.29 (m, 18H, -CH₂-), 1.55 (br, 6H, -CH₂-), 1.93 (m, 6H, -CH₂-), 2.72 (t, *J*=7.8 Hz, 6H, -CH₂-), 3.24 (t, *J*=7.8 Hz, 6H, -CH₂-), 3.30 (t, *J*=7.8 Hz, 6H, -CH₂-), 5.39 (s, 6H, -CH₂-), 6.61 (m, 9H, -ArH), 7.07 (s, 3H, -ArH), 7.18-7.13 (m, 9H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), δ (ppm): 148.3, 147.9, 137.0, 129.1, 127.0, 120.8, 115.4, 111.8, 64.1, 53.1, 51.3, 48.3, 31.6, 27.0, 26.8, 26.7, 23.1, 22.6, 13.9.

Mon-3Alk: Compound **3Ph** (245.0 mg, 0.25 mmol) and **R1** (241.1 mg, 0.75 mmol) were dissolved in DMF (20 mL), the resultant mixture was allowed to stir at 0 °C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, and purified by column chromatography using dichloromethane/ethyl acetate (1/2) as eluent to yield red solid (380.0 mg, 90.1 %). HRMS (ESI, m/z): $[M+H]^+$ calcd for C₉₃H₁₁₂N₂₁O₉, 1666.8952; found, 1666.8962. (EA) (%, found/Calcd): C, 66.84/67.01; H, 6.94/6.71; N, 17.36/17.64. ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 0.89 (br, 9H, -CH₃), 1.31 (br, 18H, -CH₂-), 2.00 (br, 9H, -CH₂-), 2.13 (br, 6H, -CH₂-), 2.48 (br, 6H, -CH₂-), 2.73 (br, 6H, -CH₂-), 3.37 (br, 6H, -CH₂-), 3.47 (br, 6H, -CH₂-), 4.33 (br, 6H, -CH₂-), 5.43 (s, 6H, -CH₂-), 6.65 (br, 6H, -ArH), 7.11 (s, 6H, -ArH), 7.67-7.64 (m, 3H, -ArH), 7.90-7.85 (m, 12H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), δ (ppm): 154.82, 151.15, 147.86, 147.67, 147.12, 143.89, 136.96, 127.26, 126.22, 120.91, 117.21, 116.61, 111.14, 109.13, 83.18,

Scheme S5. The synthetic route to Mon-2Alk and LineD-NS

Mon-2Alk: Compound **3Ph** (97.3 mg, 0.1 mmol) and **R1** (63.9 mg, 0.20 mmol) were dissolved in DMF (20 mL), the resultant mixture was allowed to stir at 0 °C overnight, and then poured into a lot of water. The precipitate was collected and washed several times with water, and purified by column chromatography using dichloromethane/ethyl acetate (1/2) as eluent to yield red solid (64.5 mg, 45.2 %). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 0.90 (br, 9H, -CH₃), 1.32-1.25 (br, 18H, -CH₂-), 1.92 (m, 2H, -CH₂-), 2.00 (br, 6H, -CH₂-), 2.13 (m, 4H, -CH₂-), 2.48 (m, 4H, -CH₂-), 2.73 (br, 6H, -CH₂-), 3.24 (m, 2H, -CH₂-), 3.37 (m, 6H, -CH₂-), 3.47 (br, 4H, -CH₂-), 4.33 (br, 4H, -CH₂-), 5.42 (m, 6H, -CH₂-), 6.64 (m, 7H, -ArH), 7.21-7.11 (m, 6H, -ArH), 7.67-7.64 (m, 2H, -ArH), 7.91-7.81 (m, 10H, -ArH). ¹³C NMR (75 MHz, CDCl₃, 298 K), δ (ppm): 154.84, 151.19, 148.25, 147.87, 147.66, 147.18, 143.92, 137.05, 136.93, 129.11, 127.28, 127.20, 126.22, 120.91, 120.84, 117.24, 116.61, 115.34, 111.78, 111.17, 109.21, 83.18, 69.17, 68.06, 53.13, 52.06, 51.22, 51.07, 50.41, 50.17, 31.62, 31.54, 29.59, 27.96, 27.20, 27.0326.76, 26.72, 26.62, 23.13, 22.94, 22.56, 15.07, 13.96.

LineD-NS: **Mon-NS** (44.4 mg, 0.035 mmol), **Mon-2Alk** (50.2 mg, 0.035 mmol), CuSO₄ (30+30 μ L), NaAsc (30+30 μ L), in 5.5 mL DMF, deep red powder (70.7 mg, 76.1 %). M_w =13 650, M_w/M_n = 1.21 (GPC, polystyrene calibration). ¹H NMR (300 MHz, CDCl₃, 298 K), δ (TMS, ppm): 0.86 (-CH₃), 1.06 (-CH₃), 1.25 (-CH₂-), 1.60 (-CH₂-), 1.97-1.85 (-CH₂-, -CCH), 2.17 (-CH₂-), 2.69 (-CH₂-), 2.91 (-CCH₂-), 3.10 (-SCH₂-), 3.22 (-NCH₂-), 3.31 (-NCH₂-), 3.40 (-NCH₂-), 3.74 (-NCH₂-), 3.82 (-NCH₂-), 4.05 (-NCH₂-), 4.40 (-OCH₂-), 4.48 (-OCH₂-), 5.39 (-NCH₂-), 6.56 (-ArH), 7.11-7.08 (-ArH), 7.37 (-ArH), 7.56 (-ArH), 7.72 (-ArH), 7.86 (-ArH).

@ 1064	$T_{\rm e}^{\ a}$	$l_s{}^b$	λ_{\max}^{c}	$d_{33}{}^{d}$	$d_{33(\infty)}{}^e$	${\it \Phi}^{f}$	N^{g}	$N_{\rm N}{}^h$	$N_{\rm S}{}^i$	${ m M_w}^j$	$M_w/M_n^{\ j}$
@1004	(°C)	(nm)	(nm)	(pm/V)	(pm/V)		(%)	(%)	(%)	(10 ⁴)	
LineD-NS	100	263	471	91.0	15.8	21.9	56.8	44.1	12.7	1.365	1.21

Table S1. The NLO properties of LineD-NS measured at 1064 nm fundamental beam.

^{*a*} The best poling temperature. ^{*b*} Film thickness. ^{*c*} The maximum absorption in thin films. ^{*d*} Second harmonic generation (SHG) coefficient. ^{*e*} The nonresonant d_{33} values calculated by using the approximate two-level model. ^{*f*} Order parameter $\Phi = 1 - A_1/A_0$, A_1 and A_0 are the absorbance of the polymer film after and before corona poling, respectively. ^{*g*} The loading density of the effective chromophores. ^{*h*} The loading density of the nitro-chromophores. ^{*i*} The loading density of the sulfornly-chromophores. ^{*j*} Determined by GPC in THF, based on calibration with polystyrene.

The ¹H NMR and ¹³C NMR spectra of related compounds:

Fig.S1. ¹H NMR spectrum of polymer HypD-NN in chloroform-d.

Fig.S2. ¹³C NMR spectrum of polymer HypD-NN in chloroform-*d*.

Fig.S3. ¹H NMR spectrum of polymer HypD-NS in chloroform-*d*.

Fig.S5. ¹H NMR spectrum of polymer HypD-SS in chloroform-d.

Fig.S7. ¹H NMR spectrum of Mon-NN in chloroform-*d*.

Fig.S9. ¹H NMR spectrum of Mon-NS in chloroform-*d*.

I

Fig.S10. ¹³C NMR spectrum of Mon-NS in chloroform-*d*.

[ppm]

Fig.S15. ¹H NMR spectrum of **1** in chloroform-*d*.

Fig.S17. ¹H NMR spectrum of 2 in chloroform-*d*.

Fig.S19. ¹H NMR spectrum of **3** in chloroform-*d*.

Fig.S21. ¹H NMR spectrum of 4 in chloroform-*d*.

Fig.S23. ¹H NMR spectrum of 1-NS in chloroform-*d*.

Fig.S27. ¹H NMR spectrum of LineD-NS in chloroform-*d*.

Fig.S29. ¹³C NMR spectrum of Mon-2Alk in chloroform-d.

Fig. S30. TGA thermograms of HDPs measured in nitrogen at a heating rate of 10 °C/min.

Fig. S31. UV-vis absorption spectra of monomers and polymers in 1,4-dioxane.

Fig. S32. UV-vis absorption spectra of monomers and polymers in CH₂Cl₂.

Fig. S33. UV-vis absorption spectra of monomers and polymers in CHCl₃.

Fig. S34. UV-vis absorption spectra of monomers and polymers in THF.

Fig. S35. UV-vis absorption spectra of monomers and polymers in DMF.

Fig. S36. UV-vis absorption spectra of monomers and polymers in DMSO.

Fig. S37. UV-vis absorption spectra of the film of DHP-NN before and after poling.

Fig. S38. UV-vis absorption spectra of the film of DHP-NS before and after poling.

Fig. S39. UV-vis absorption spectra of the film of DHP-SS before and after poling.

Fig. S40. UV-vis absorption spectra of the film of Mon-NN before and after poling.

Fig. S41. UV-vis absorption spectra of the film of Mon-NS before and after poling.

Fig. S42. UV-vis absorption spectra of the film of Mon-SS before and after poling.

Fig. S43. UV-vis absorption spectra of the film of Mon-3Alk before and after poling.

Fig. S45. HRMS report of Mon-NN.

Fig. S46. HRMS report of Mon-NS.

Elemental Composition Report

Single Mass Analysis Tolerance = 1000.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2												
Monoisotopic Mass, Even Electron lons 9 formula(e) evaluated with 9 results within limits (up to 1 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-100 N: 24-24 O: 8-8												
WH-ZHU			E	CUST institut	e of Fine Chem						18	3-Mar-2015 20:35:14
20.35.14 1-TRL-1 20 (0.219) Cm (20:22) 1: TOF MS ES+												
100-						1223	5240					9.81e+003
%	15.1			1202	99960		1224.5392 1225.5391 1226.5430)				
0-141111		1100	1195.5	1200	1216.484	19	1220		1245	5.5159	12	59.0616 1111 m/z
11	60 1170	1180	1190	1200	1210 1	220	1230	1.	240	12:	50	1260
Minimum: Maximum:		1000.0	50.0	-1.5 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-F	IT (Norm)	Form	ula			
1223.5240	1223.6200	-96.0	-78.5	32.5	23.2	0.0		C57	н75	N24	08	

Fig. S47. HRMS report of Mon-SS.

	Elemental	Page	1										
Single Mass Analysis Tolerance = 1000.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2													
	Monoisotopic 7 formula(e) e Elements Use	vic Mass, Even Electron lons) evaluated with 5 results within limits (up to 1 best isotopic matches for each mass) Jsed:											
	WH-ZHU	1: 0-100 N: 21-2	1 0:9-9		ECUST institu	te of Fine Cher	18-Mar-20	015					
	4-TRL-4 65 (0.4	20:47 1: TOF MS E 2 68e+(:04 S+ 003										
	100-							1667.9071					
	%- 1590.8 0- 1590.0	643 1600.0 16	10.0 16	520.0	1630.0	1640.0	16 	66.8962 1668.9056 1669.9080 1670.9113 1693.9165 1670.0 1680.0) n/z				
	Minimum: Maximum:		1000.0	50.0	-1.5 100.0								
	Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula					
	1666.8962	1666.4257	470.5	282.3	83.5	54.4	0.0	C98 H52 N21 O9					

Fig. S48. HRMS report of Mon-3Alk.

Page 1