# **Electronic Supplementary Information**

## A new thieno-isoindigo derivative-based D–A polymer with very low bandgap for high-performance ambipolar organic thin-film transistors

Guobing Zhang,<sup>a, c\*</sup> Zhiwei Ye,<sup>a</sup> Peng Li,<sup>a, b</sup> Jinghua Guo, <sup>a, b</sup> Longxiang Tang,<sup>b</sup> Hongbo Lu,<sup>a, c</sup> and Longzhen Qiu<sup>a, c\*</sup>

<sup>a</sup>Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China. E-mail: gbzhang@hfut.edu.cn, lzqiu@ustc.edu <sup>b</sup>Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.

<sup>c</sup>Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China.

- 1. Characterization (Table S1-S3. Fig. S1-S5)
- 2. NMR spectra (Fig. S6-Fig. S11)
- 3. Mass spectrum and DSC of new monomers (Fig. S12-S14)
- 4. GPC results (Fig. S15)

| Polymer                | Lamellar spacing |       | π-π spa | cing  |
|------------------------|------------------|-------|---------|-------|
|                        | 2θ (°)           | d (Å) | 2θ (°)  | d (Å) |
| PBTPBF-BT              | 3.36             | 26.3  | 25.28   | 3.52  |
| PBIBDF-BT <sup>a</sup> | -                | 28.5  | -       | 3.55  |

**Table S1** Crystallographic parameters for polymer films of **PBTPBF-BT** and**PBIBDF-BT**.

<sup>a</sup> Values of the isoindigo derivative-based polymer were referred 12a.

| Polymer       | T-annealing<br>[°C] | Evaluation under vacuum conditions |                       |                 |                                                                                                |                                   |                 |  |
|---------------|---------------------|------------------------------------|-----------------------|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--|
|               |                     | $\frac{\mu_h}{(\text{average})^a}$ | Ion/Ioff <sup>b</sup> | V <sub>th</sub> | μ <sub>e</sub><br>(average) <sup>a</sup><br>[cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ] | Ion/Ioff <sup>c</sup>             | V <sub>th</sub> |  |
|               | N/A                 |                                    | _                     | [v]<br>_        | 0.46                                                                                           | $10^4 - 10^5$                     | -0.4            |  |
| PBIBDF-<br>BT | 180                 | _                                  | _                     | _               | (0.29)<br>1.06<br>(0.79)                                                                       | $10^4 - 10^5$                     | 28.7            |  |
|               | N/A                 | 0.13<br>(0.10)                     | $10^2 - 10^3$         | -15.5           | 0.08                                                                                           | 10 <sup>2</sup> - 10 <sup>3</sup> | 47.0            |  |
| PBTPBF-<br>BT | 150                 | 0.34 (0.30)                        | $10^3 - 10^4$         | -26.4           | 0.13 (0.10)                                                                                    | 10 <sup>2</sup> - 10 <sup>3</sup> | 55.6            |  |
|               | 180                 | 0.45<br>(0.38)                     | $10^4 - 10^5$         | -21.3           | 0.22<br>(0.18)                                                                                 | $10^3 - 10^4$                     | 56.9            |  |

<sup>a</sup>Average mobility from more than 8-10 devices; <sup>b</sup>Evaluated at  $V_D = -20$  V; <sup>c</sup>Evaluated at  $V_D = +20$  V.

|               |                     | <b>Evaluation under air conditions</b> |                    |       |                          |                     |      |
|---------------|---------------------|----------------------------------------|--------------------|-------|--------------------------|---------------------|------|
| Polymer       | T-annealing<br>[°C] | <i>II</i> .                            | L/L.c <sup>b</sup> | Va    | <i>U</i> .               | L./L.g <sup>c</sup> | Va   |
|               | [ 0]                | مر<br>(average) <sup>a</sup>           | • on • off         | ' th  | (average) <sup>a</sup>   | -on -off            | , th |
|               |                     | $[ cm^2 V^{-1} s^{-1} ]$               |                    | [V]   | $[ cm^2 V^{-1} s^{-1} ]$ |                     | [V]  |
|               | N/A                 | 0.39                                   | $10^3 - 10^4$      | -15.4 | 0.28                     | $10^3 - 10^4$       | 1.63 |
|               |                     | (0.27)                                 |                    |       | (0.20)                   |                     |      |
| PBIBDF-       | 180                 | 0.36                                   | $10^3 - 10^4$      | -23   | 0.60                     | $10^3 - 10^4$       | 37.8 |
| BL            |                     | (0.23)                                 |                    |       | (0.37)                   |                     |      |
|               | N/A                 | 0.25                                   | 103 104            | 10.5  | 0.03                     | 102 103             | 76.6 |
|               | 11/74               | (0.21)                                 | 10 - 10            | -17.5 | (0.02)                   | 10 - 10             | 70.0 |
| PBTPBF-<br>bt | 150                 | 0.45                                   | $10^2 - 10^3$      | -14.4 | 0.02                     | $10^2 - 10^3$       | 69.1 |
| DI            |                     | (0.36)                                 |                    |       | (0.01)                   |                     |      |
|               | 180                 | 0.61                                   | $10^2 - 10^3$      | -16.2 | 0.07                     | $10^2 - 10^3$       | 76.2 |
|               |                     | (0.53)                                 |                    |       | (0.06)                   |                     |      |

Table S3 OTFTs performances of the polymers tested under air.

<sup>a</sup> Average mobility from more than 8-10 devices; <sup>b</sup> Evaluated at  $V_D = -20$  V; <sup>c</sup> Evaluated at  $V_D = +20$  V. <sup>d</sup> The mobilities lower than those of the previous report (tested in low vacuum or glovebox, 12a).



Fig. S2 the Output and transfer curves of PBIBDF-BT devices annealed at 180 °C and tested under vacuum. PBIBDF-BT exhibited n-channel transport in the vacuum with the electron mobility as high as 1.06 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>.



**Fig. S3** The transfer characteristics of **PBIPBF-BT** devices annealed at 180 °C and test under vacuum condition. All the transfer curves for electron and hole transport showed negligible hysteresis.



**Fig. S4** The transfer characteristics of **PBIPBF-BT** devices annealed at 180 °C and test under air condition.



Fig. S5 AFM images (2  $\mu$ m × 2  $\mu$ m) of PBTPBF-BT thin film with the annealing temperature of 150 °C.

## 2. NMR spectra



Fig. S6 <sup>1</sup>H NMR spectra of compound 2 in CDCl<sub>3</sub>.



Fig. S7 <sup>1</sup>H NMR spectra of compound 3 in CDCl<sub>3</sub>.



Fig. S8 <sup>13</sup>C NMR spectra of compound 3 in CDCl<sub>3</sub>.



Fig. S9 <sup>1</sup>H NMR spectra of compound 4 in CDCl<sub>3</sub>.



Fig. S10 <sup>13</sup>C NMR spectra of compound 4 in CDCl<sub>3</sub>.



#### 3. Mass spectrum and DSC curves of monomers



Fig. S12 The mass spectrum of compound 3.



Fig. S13 The mass spectrum (MALDI-TOF) of 4.



Fig. S14 The DSC curves of (a): compound 3 and (b): compound 4.

### 4. GPC results



Fig. S15 GPC results of PBTPBF-BT.