Supporting Informations

for

Synthesis of conjugated, hyperbranched copolymers for tunable multicolor

emissions in light-emitting diodes

Jongho Kim,^a Juhyeon Park,^b Sung-Ho Jin,^b Taek Seung Lee^{a,*}

^a Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, Korea

^b Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735, Korea

* Corresponding author: TSL (tslee@cnu.ac.kr)

Fig. S1. Fluorescence spectra of HBPs in chloroform solutions with various concentrations (10^{-3} to 10^{-7} M).

Fig. S2. Photographs of HBPs in chloroform solution and in the film state under UV lamp (365 nm).

Fig. S3. UV-vis absorption and fluorescence spectra of HBP1 and LP1 in chloroform solutions and in the film (spin-cast from 4 wt/v% chloroform solutions).

(a)

Fig. S4. (a) Fluorescence spectra and (b) photographs of LP1 in chloroform solutions with various concentrations (10^{-3} to 10^{-7} M).

Fig. S5. Change in fluorescence spectra of PMMA films containing various concentrations of HBP4 (0.05 to 1 wt% of HBP4 with regard to 0.5 g PMMA). Excitation wavelength = 368 nm.

Fig. S6. Relationship between QY and fraction of water in THF solution of HBP5. QYs were determined using rhodamine B as the standard (0.65 in ethanol).

Fig. S7. Structure of EL device using the HBPs as emitting layers.

Polymers _	Solut	ion ^a	Film ^b		
	Abs (nm)	PL (nm)	Abs (nm)	PL (nm)	
HBP1	348	428	360	435	
HBP2	355	431	370	434	
HBP3	353	428	365	440, 499, 597	
HBP4	354	431	373	431, 500, 600	
HBP5	355	431	365	432, 500, 600	
HBP6	354	429	365	435, 500, 600	
LP1	340	403	340	430, 470	

Table S1. Optical Properties of the Polymers

^a chloroform solutions (1 x 10⁻⁷ M)

^b spin-cast from chloroform solutions (4 wt/v%)

Table S2. Decay times of HBP1 and LP1 in the solid states at 420 nm and at500 nm upon excitation at 389 nm

Polymers -	420 nm			500 nm		
	$ au_1$ (%) / ns	$ au_2$ (%) / ns	Avg / ns	τ ₁ (%) / ns	$ au_2$ (%) / ns	Avg / ns
HBP1	0.107 (81)	2.602 (19)	0.503	0.418 (50)	2.296 (50)	1.357
LP1	0.100 (83)	0.360 (17)	0.144	0.351 (63)	2.345(37)	1.089

Table S3. Decay times of of HBP4, HBP5 and HBP6 in solutions and in the films at420 nm and at 500 nm upon excitation at 389 nm

Polymers	States	420 nm				500 nm		
		τ ₁ (%) / ns	$ au_2$ (%) / ns	Avg / ns	τ ₁	(%) / ns	$ au_2$ (%) / ns	Avg / ns
HBP4	Solution	1.293 (99)	7.078 (1)	1.351	1.(026 (15)	5.819 (85)	5.100
	Film	0.101 (75)	1.119(25)	0.356	0.9	981 (79)	4.662 (21)	1.754
HBP5 –	Solution	0.662 (70)	1.108 (30)	0.796	0.6	687 (40)	2.559 (60)	1.810
	Film	0.087 (98)	0.900 (2)	0.103	0.8	539 (45)	2.245 (55)	1.477
HBP6 -	Solution	0.562 (54)	0.977 (46)	0.753	0.8	304 (73)	3.847 (27)	1.626
	Film	0.007 (86)	0.257 (14)	0.042	0.8	575 (48)	2.207 (52)	1.424

Concentrations (M)	420 nm				500 nm			
	τ ₁ (%) / ns	$ au_2$ (%) / ns	Avg / ns	τ ₁ (%) / ns	τ ₂ (%) / ns	Avg / ns		
10-7	1.293 (99)	7.078 (1)	1.351	1.026 (15)	5.819 (85)	5.100		
10 ⁻⁶	0.956 (98)	3.251 (2)	1.002	1.569 (42)	5.655 (58)	3.939		
10 ⁻⁵	0.958 (98)	2.446 (2)	0.988	1.043 (50)	4.053 (50)	2.548		
10-4	0.837 (94)	2.168 (6)	0.917	0.877 (62)	4.170 (38)	2.128		
10 ⁻³	0.836 (90)	1.582 (10)	0.911	0.407 (43)	3.034 (57)	1.904		

Table S4. Decay times of HBP4 in chloroform solutions with various concentrationsat 420 nm and at 500 nm upon excitation at 389 nm