Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Polypeptoids with Tunable Cloud Point Temperatures Synthesized from N-Substituted Glycine N-Thiocarboxyanhydrides

Xinfeng Tao, Jianwei Du, Youxiang Wang, and Jun Ling*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

* Correspondence to: Jun Ling (E-mail: lingjun@zju.edu.cn)

Scheme S1. Synthesis of sarcosine *N*-thiocarboxyanhydride (Sar-NTA).

Scheme S2. Synthesis of *N*-butylglycine *N*-thiocarboxyanhydride (NBG-NTA).

Figure S1. Illustration of onset determination of transition window (ΔT).

Figure S2. ¹H NMR spectrum of Sar-NTA in CDCl₃ (*: ethyl acetate).

Figure S3. ¹H NMR spectrum of NBG-NTA in CDCl₃ (*: ethyl acetate).

Run	[Sar]/[NBG]	Conversion ^b (%)			Yield	$M_{\rm n theo}^{\rm c}$	Copolypeptoid	$M_{ m nNMR}{}^{ m d}$
	/[benzylamine]	Sar	NBG	total	(%)	(kDa)	Composition ^d	(kDa)
S 1	117/79/1	75.8	55.8	67.2	60.2	11.4	P(Sar ₉₅ - <i>r</i> -NBG ₅₅)	13.1

Table S1. Copolymerization of Sar-NTA with NBG-NTA initiated by benzylamine^a

^a Polymerization conditions: [Sar]+[NBG] = 0.5 mol/L, 48 h in THF at 60 °C. ^b Determined by taking a small amount of reaction mixture and dissolving in DMSO- d_6 for ¹H NMR analysis. Monomer conversions were calculated from the relative integration of the proton resonance of monomers and copolymers. ^c Defined as Equation (S1). ^d Calculated by ¹H NMR analysis of isolated copolypeptoid products with DMSO- d_6 as the solvent.

 $M_{n,theo} = \frac{[Sar]}{[benzylamine]} \times Conversion_{sar} \times 71 + \frac{[NBG]}{[benzylamine]} \times Conversion_{NBG} \times 113 + 107$ (S1)

Figure S4. SEC traces of samples 7–17 in Group II.

Figure S5. SEC trace of sample 18 in Group III.

Table S2. Copolymerization of Sar-NTA with NBG-NTA for reactivity ratios measurement^a

Run	[Sar] ₀ /[NBG] ₀	Conversion (%) ^b	Sar mol% in copolymers ^c	Copolymer composition (f) ^d
S2	4.608	17.4	88.6	7.802
S3	1.816	18.3	74.7	2.956
S4	0.983	17.1	64.0	1.781
S 5	0.541	16.0	45.1	0.822

^a Copolymerization were carried out in THF at 60 °C for 4 h with feed molar ratios of monomers ([Sar]+[NBG]) to initiator around 200, [Sar]+[NBG] = 0.5 mol/L; ^b Determined by taking a small amount of reaction mixture and dissolving in DMSO- d_6 for ¹H NMR analysis. Monomer conversions were calculated from the relative integration of the proton resonance of monomers and copolymers. ^c Calculated by ¹H NMR analysis of isolated copolypeptoid products with DMSO- d_6 as the solvent. ^d Defined as Equation (S3).

$$F = \frac{[Sar]_0}{[NBG]_0}$$
(S2)
$$f = \frac{Sar \ mol\%}{100 - Sar \ mol\%} \ (Sar \ mol\% \ in \ copolymer \ composition) \ (S3)$$

Figure S6. Plots of F(f-1)/f *versus* (F²/f) for the benzylamine-initiated copolymerization of Sar-NTA with NBG-NTA and the linearly fitted line whose slope is r_1 [1.70(7), Sar-NTA] and intercept is r_2 [0.63(7), NBG-NTA] by the Fineman-Ross method.

Figure S7. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for samples of Group I (1–6) with a concentration of 3.0 mg/mL during heating procedure.

Figure S8. Plots of T_{cp} versus the molar fraction of Sar segment for samples of Group I (1–6) and the corresponding linearly fit curve.

Figure S9. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for samples of 9–12 (Group II) with a concentration of 3.0 mg/mL during heating procedure.

Figure S10. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for samples of 13–17 (Group II) with a concentration of 3.0 mg/mL during heating procedure.

Figure S11. Plots of T_{cp} versus the molar fraction of Sar segment for samples of Group II (9–17) and the corresponding linearly fit curve of samples 13–17.

Figure S12. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for the sample 5 with different concentrations (heating and cooling cycles are symbolized by the filled and unfilled symbols, respectively).

Figure S13. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for the sample 6 of 3.0 mg/mL aqueous solution with the addition of Na₂SO₄ at various concentrations (heating and cooling cycles are symbolized by the filled and unfilled symbols, respectively).

Figure S14. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for the sample 6 of 3.0 mg/mL aqueous solution with the addition of NaCl at various concentrations (heating and cooling cycles are symbolized by the filled and unfilled symbols, respectively).

Figure S15. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for the sample 6 of 3.0 mg/mL aqueous solution with the addition of NaBr at various concentrations (heating and cooling cycles are symbolized by the filled and unfilled symbols, respectively).

Figure S16. Plots of transmittance at $\lambda = 450$ nm *versus* temperature for (A) 0.83 mg/mL aqueous solution of sample 6 with the addition of 0.18 mol/L Na₂Cl and (B) 3.0 mg/mL aqueous solution of sample 6.

Figure S17. Aggregations diameter *versus* temperature for the aqueous solutions of sample **4** and sample **18** at a concentration of 3.0 mg/mL.