Efficient Cancer Cell Capturing SiNWAs Prepared via Surface-Initiated SET-LRP and Click Chemistry

Lulu Xue, Zhonglin Lyu, Yafei Luan, Xinhong Xiong, Jingjing Pan, Gaojian Chen* and Hong Chen*

Figure S1. Typical ¹H NMR spectrum (D₂O) of PAGA prepared using 2-hydroxyethyl α-bromoisobutyrate (HEBiB) as the sacrifice initiator for the surface-initiated polymerization.

Figure S2. The dry thickness of polymer brushes grafted on silicon wafers at different polymerization time. Data are the mean \pm SD (n = 3).

Figure S3. ¹H NMR spectra (DMSO-_{d6}) of the freeze-dried reaction mixture using 2hydroxyethyl α-bromoisobutyrate (HEBiB) as the sacrifice initiator during the surface-initiated polymerizations at different times.

Sample -	XPS atomic concentration (%)					
	[Si]	[C]	[N]	[O]	[Br]	[P]
SN-N ₃	17.4	48.2	7.3	27.1		
SN-APT	7.8	49.1	8.5	33.4		1.2

Table S1. XPS atomic concentration of SN-N3 and SN-APT surfaces.

Figure S4. High-resolution XPS spectrum of the Br 3d regions on SN-Br surface.

Figure S6. (a) Water contact angles of SN-N $_3$ and SN-APT. (b) ATR-FTIR spectra of SN-N $_3$ and SN-APT.

Figure S7. The density of Ramos cells captured by SN-PAGA-APT surfaces with different aptamer ratios. Data are the mean \pm SD (n = 5).