Supporting Information

Electrochemical Redox Responsive Supramolecular Self-healing

Hydrogels Based on Host-Guest Interaction

Liao Peng^a, Huijuan Zhang^b, Anchao Feng^a, Meng Huo^a, Zilin Wang^a, Jin Hu^c, Weiping Gao^c and Jinying Yuan^{a,*}

^a Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China E-mail: <u>yuanjy@mail.tsinghua.edu.cn</u>

^b School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing, 100048, China

^c Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China

1. FT-IR spectra of P(DMA-r-HEMA-Fc) and P(DMA-r-GMA-CD)

The structures of P(DMA-r-HEMA-Fc) and P(DMA-r-GMA-CD) were characterized by FT-IR using a Perkin-Elmer Spectrum 100 FT-IR spectrometer, and the results are shown in Figure S1.

2. UV-vis characterization of ferrocenecarboxylic acid and P(DMA-

r-HEMA-Fc)

The UV-vis spectra of ferrocenecarboxylic acid and P(DMA-r-HEMA-Fc) in the absence and presence of β -CD and P(DMA-r-GMA-CD) were characterized, and shown in Figure S2 and Figure S3.

Figure S1 FT-IR spectra of P(DMA-*r*-HEMA-Fc)(a) and P(DMA-*r*-GMA-CD)(b)

Figure S2 UV-vis spectra of ferrocenecarboxylic acid in the absence and presence of β -CD and P(DMA-*r*-GMA- β -CD)(Solvent: CHCl₃)

Figure S3 UV-vis spectra of P(DMA-*r*-HEMA-Fc) in the absence and presence of P(DMA-*r*-GMA- β -CD) (Solvent: H₂O)