Supporting information

Poly(thiolactone) Homo- and Copolymers from Maleimide Thiolactone: Synthesis and Functionalization

Tobias Rudolph,^{1,2} Pieter Espeel,³ Filip E. Du Prez,^{3,*} Felix H. Schacher^{1,2,*}

[1] Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany

E-mail: felix.schacher@uni-jena.de

[2] Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7,

07743 Jena, Germany

[3] Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry,

Ghent University, Krijgslaan 281 S4-bis, B-9000 Gent, Belgium

E-mail: filip.duprez@ugent.be

Figure S1: Kinetic investigation of the synthesis of MITla comparing the newly formed thiolactone signal at 4.95 ppm (DMSO- d_6) to trioxane as internal standard at 70 °C.

Figure S2: Comparison of FT-IR spectra for maleic anhydride (blue trace-), D,L-homocysteine thiolactone hydrochloride (black trace), and the desired maleimide thiolactone (IUPAC: 1-(2-oxotetrahdrothiophen-3-yl)-1H-pyrrole-2,5-dione; MITla, red trace).

Figure S3: Enlarged FT-IR spectrum for MITla and the important signals for: carbonyls at 1689, C-N-C at 1400, and the maleimide double bond at 830 and 690 cm⁻¹.

Figure S4: ¹H-NMR spectra of maleimide thiolactone (MITla) and peak assignment (CDCl₃, 300 MHz).

Figure S5: ¹³C-NMR spectrum of maleimide thiolactone (MITla) (CDCl₃, 75 MHz).

Figure S6: ESI-MS spectrum for MITla.

Figure S7: Comparison of SEC traces for the homopolymerization of MITla initiated by different amounts of TPO in solution (100 mg mL⁻¹ DCM): 5 wt.% (dotted line), 10 wt.% (straight line), and 20 wt.% (dashed line).

Figure S8: Comparison of SEC traces for the homopolymerization of MITla initiated by different amounts of AIBN in solution (100 mg mL⁻¹ THF): 5 wt.% (dotted line), 10 wt.% (straight line), and 20 wt.% (dashed line).

Figure S9: Comparison of ¹³C-NMR traces for MITla (black trace) and PMITla (10 wt.% TPO, bulk; red trace) (DMSO- d_6 , 75 MHz).

Figure S10: NMR spectrum for PMITla^{AIBN} initiated by AIBN in THF (CDCl₃, 300 MHz).

Figure S11: ¹³C-NMR spectrum for PMITla^{AIBN} (DMSO-*d*₆, 75 MHz).

Figure S12: ¹³C-NMR spectrum for PMITla^{AIBN} (CDCl₃, 75 MHz).

Figure S13: COSY spectrum for PMITla^{AIBN} initiated *via* AIBN in THF (300 MHz; CDCl₃).

Figure S14: HSQC NMR spectrum for PMITla^{AIBN} initiated *via* AIBN in THF (300 MHz; CDCl₃).

Figure S15: DSC thermogram for PMITla^{TPO} in the temperature range of -30 to 200°C.

Figure S16: Comparison of FT-IR traces for PMITla^{AIBN} (red trace) and PMITla^{TPO} (black trace) (A) and an enlargement of the fingerprint region (B).

Figure S17: Comparison of SEC traces for P(MITla-*alt*-S)₁₀ (dotted line), P(MITla-*alt*-S)₂₃ (straight line), and P(MITla-*alt*-S)₃₆ (dashed line).

Figure S18: ¹H-NMR spectrum for P(MITla-*alt*-S)₂₃ and peak assignment (300 MHz; CDCl₃).

Figure S19: ¹H-NMR spectrum for P(MITla-*alt*-S)₂₃ and peak assignment (300 MHz; DMSO-*d*₆).

Figure S20: ¹H-NMR spectrum for P(MITla-co-NIPAAm)₂₃ and peak assignment (300 MHz; CDCl₃).

Figure S21: A) Time vs. styrene monomer conversion plot determined by NMR (black square) and GC (red dot) for the copolymerization of MITla and styrene; B) comparison of SEC traces for the kinetic investigation of the copolymerization of MITla and styrene using RAFT.

Figure S22: Comparison of DSC traces for P(MITla-*alt*-S)₂₃ (black lines), P(MITla-*co*-NIPAAm)₂₃ (red lines) and PMITla^{TPO} (blue lines) in the second (straight lines) and third (dashed lines) heating run.

Figure S23: Comparison of NMR spectra for PMITla^{AIBN} before (black trace) and after (red trace) double modification *via n*-butylamine and methyl acrylate (300 MHz; CDCl₃).

Figure S24: HSQC NMR spectra for PMITla^{AIBN,DM} initiated *via* AIBN in CHCl₃ by methyl acrylate and *n*-butylamine and peak assignment (300 MHz; CDCl₃).

Figure S25: Comparison of NMR traces for P(MITla-*co*-NIPAAm)₂₃ before (black trace) and after (red trace) double modification *via n*-butylamine and methyl acrylate (300 MHz; CDCl₃).

Figure S26: Comparison of NMR traces for P(MITla-*alt*-S)₃₆ before (black trace) and after (red trace) double modification *via n*-butylamine and methyl acrylate (300 MHz; CDCl₃).

Figure S27: Comparison of ¹³C-NMR traces for PMITla^{AIBN,DM} (blue trace), P(MITla-*co*-NIPAAm)₂₃^{DM} (red trace), and P(MITla-*alt*-S)₃₆^{DM} (black trace); inset shows the signal at 58 ppm.

Figure S28: Comparison of SEC traces for the double modification by methyl acrylate and *n*-butylamine for $P(MITla-alt-S)_{36}$ in different solvents: pristine $P(MITla-alt-S)_{36}$ (dashed line), in THF (black line), in dioxane (red line), chloroform (blue line), DMF (blue line).

Solvent	Reaction Time [h]	Further educt addition after	Estimated degree of functionalization [%] ^a	M _n ^b [g mol ⁻¹]	Đ ^b
DMF	48	24 h	40	19 600	1.55
THF	48	24 h	60	18 600	1.37
Dioxane	48	24 h	50	16 600	1.30
Chloroform	48	24 h	60	15 000	1.29

Table S1: Double modification of P(MITla-*co*-S)₃₆ by *n*-butylamine and methyl acrylate at different conditions (25 mg mL⁻¹).

a) Degree of functionalization is estimated via ¹H-NMR (300 MHz; CDCl₃)

b) SEC (DMAC/LiCl): PS-calib.

Figure S29: Comparison of ¹³C-NMR spectra for double modification by methyl acrylate and *n*-butylamine for P(MITla-*alt*-S)₃₆ in different solvents: in THF (black line), in dioxane (red line), chloroform (blue line), DMF (blue line) (75 MHz; CDCl₃); (As polymers were only precipitated once before measuring NMR, educt signals are still observed).

Figure S30: Comparison of FT-IR spectra for PMITla^{AIBN} before (black trace) and after (red trace) modification by methyl acrylate and *n*-butylamine.

Figure S31: Comparison of FT-IR spectra for P(MITla-*co*-NIPAAm)₂₃ before (black trace) and after (red trace) modification by methyl acrylate and *n*-butylamine.

Figure S32: Comparison of FT-IR spectra for $P(MITla-co-S)_{36}$ before (black trace) and after (red trace) modification by methyl acrylate and *n*-butylamine.