One-Pot Catalyst-Free Synthesis of Down- and Upconversion Fluorescent

Oligopyrazolines from Diazoacetates and Maleic Anhydride

Xiangxiang Jia, Yan Li, Jinlong Wu, Cheng Chen, Lijian Liu* Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Correspondence to: Lijian Liu (E-mail: liulj@whu.edu.cn)

Supporting Information

Figure S1. The polymerization of MA and EDA at different reaction time in CHCl₃. (A) black: M_n ; red: PDI. (B) black: yield; red: N%.

Figure S2. The on-line FT-IR spectra of MA polymerized with MDA.

Figure S3. The on-line FT-IR spectra of MA polymerized with *t*-BDA.

Figure S4. The ¹H NMR spectra of the oligomer of [1a]:[2a]=1:1 with the addition of deuteroxide.

Figure S5. The FT-IR spectra of the oligomers. (A) The oligomers with different feed ratios of [1a]:[2a]; (B) The oligomers derived from MA and **2a-c** with the feed ratio of [1a]:[2]=1:1. Here, in Figure S5A, the ratio of absorption at 3434 cm⁻¹ to that at 1744 cm⁻¹, defined as A_{3434}/A_{1744} (A_{3434} : the peak area of 3708-3283 cm⁻¹; A_{1744} : the peak area of 1631-1869 cm⁻¹), could be used to express the change of COOH group in the oligomer with different feed ratios in some way. The values of A_{3434}/A_{1744} for the reactions with the ratio of 1-0.1 are 0.66, 0.72, 0.35 and 0.33, respectively.

298+168×6+114+1 {[- $(U1)_2$ - $(U2)_5$ -U5-]H⁺} for *m/z*=1421.3; 298×2+168×5+114+1 {[- $(U1)_2$ - $(U2)_5$ -U5-]H⁺} for *m/z*=1551.3; 298×3+168×4+114+1 {[- $(U1)_3$ - $(U2)_4$ -U5-]H⁺} for *m/z*=1681.4; 298×4+168×3+114+1 {[- $(U1)_4$ - $(U2)_3$ -U5-]H⁺} for *m/z*=1811.5.

The spectrum analysis for Figure S6B is shown as follows: series C1-C5 are made up of U1+H⁺, m/z=298n+1, n=5-9; series D1-D4 are made up of U1+U2+H⁺, m/z=298n+168+1, n=5-8.

For monomer *t*-BDA, $M_{U1}=354$, $M_{U2}=196$, $M_{U4}=114$, $M_{U5}=142$. Here *M* represents molecular weight. As shown in Figure S7A, series 337.1+142 (for *m/z*=479.2), 337.1+142+196 (for *m/z*=675.4) and 337.1+354 (for *m/z*=691.2) are recorded, marked as \blacktriangle . Other series (marked as \bullet , \blacksquare , \clubsuit , and \heartsuit) all possess an *m/z* difference of 196 (U2). The formula for *m/z*=379.1 is 354+2+23 (*i.e.* [H-U1-H]Na⁺).

For monomer MDA, $M_{U1}=270$, $M_{U2}=154$, $M_{U4}=72$, $M_{U5}=100$. Here *M* represents molecular weight. The formulae for the calculation of measured *m/z* are expressed as follows: series a1-a4 are made up of U1+U4+Na⁺, $m/z=270n+72\times2+23$, n=2-5;

series b1-b4 are made up of U1+Na⁺, *m/z*=270*n*+23, *n*=3-6;

series c1-c4 are made up of U1+U4+Na⁺, *m/z*=270*n*+72+23, *n*=3-6.

Here, 23 is the m/z value of Na⁺. The differential value between series b and c is 72 (U4). Another deviation between 879.3 and 977.3 is 98, in agreement with the unit U3.

Figure S8. The DSC curves of the obtained oligomers. (A) Oligomers from MA and EDA without any solvent with feed ratio of 1-0.1; (B) Oligomers from MA and MDA at two different conditions: in CHCl₃ at room temperature and without the addition of solvents; (C) Oligomers from MA and *t*-BDA at two different conditions: in CHCl₃ at room temperature and without the addition of solvents.

Figure S9. The TG curves of the oligomers obtained from MDA and t-BDA without solvents.

ىلى. ئارىلىيە يەلى	فاستلته المؤندي	والمتعادية والمتعاقم		1 #L	:1
enteren en enteren Le substant		internetiste blitte south		0.	8:1
المريد بريد المريد المريد ريد المريد الم		ilikilesite mis	ni minan	0.	5:1
				M	DA
<u>ii</u>				t-B	DA
10	20	30	40	50	
		20 ([°]	2)		

Figure S10. The XRD patterns of the oligomers.

Figure S11. The SEM images of the oligomers with feed ratio of [1a]:[2a]=1:1 and 0.5:1.

Figure S12. UV-Vis (A) and fluorescent spectra (B) of oligomers from MDA and t-BDA.

Table S1. The quantum yield (QY) of the oligomers.

Oligomer	[1 a]:[2 a]=1:1	[1a]:[2a]=0.8:1	[1a]:[2a]=0.5:1	[1a]:[2a]=0.1:1	[1a]:[2b]=1:1	[1a]:[2 c]=1:1
QY (%)	19	15	14	12	12	17

The QY is measured with quinine sulfate as the standard (0.1 M H_2SO_4 at 22 °C, QY=58% with excitation at 350 nm), using the following formula:

$$Q = Q_R \frac{I O D_R n^2}{I_R O D n_R^2}$$

where Q, I, OD and n are the quantum yield, the integrated fluorescence intensity, the optical density and the refractive index, respectively. The subscript R represents the standard fluorophore.

Figure S13. Fluorescent spectra of the oligomer from EDA with the ratio of 1:1 at different excitation wavelengths.

Figure S14. The excitation spectrum with the emission at 445 nm.

Figure S15. Upconversion fluorescent spectra of the oligomer from EDA with the ratio of 1:1 at different excitation wavelengths.

Figure S16. Cytotoxicity of the oligomer from EDA with the ratio of 1:1 in Hela cells.

Cytotoxicity Assay. Hela cells in the medium of DMEM containing 10% FBS (1 mL) were seeded directly in a 24-well plate (5×10^4 cells per well) and then incubated at 37 °C for 24 h. After the cells were incubated at 37 °C for another 24 h with the addition of the sample to be detected, 1 mL of DMEM containing 10% FBS and MTT (60 µL, 5 mg/mL) were added into each well with the following incubation at 37 °C for 4 h. After that, the supernatant was removed and DMSO (850 µL) was added in. The absorbance of the solution at 570 nm was measured with a microplate reader (Bio-Rad 550) to obtain the OD value. The relative cell viability was calculated as followed:

Relative cell viability = $(OD_{(sample)}/OD_{(control)}) \times 100\%$

where $OD_{(sample)}$ was obtained from the cells in the presence of the oligomer and $OD_{(control)}$ was obtained from the cells without the addition of oligomer. The data was given as mean \pm standard deviation (SD) based on triplicate independent experiments.