Supporting Information

Phase Separation and Self-Assembly of Cyclic Amphiphilic Block Copolymers with a Main-Chain Liquid Crystalline Segment

Satoshi Honda, Maito Koga, Masatoshi Tokita,* Takuya Yamamoto,* and Yasuyuki Tezuka*

Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152–8552, Japan

Figure S1. SEC traces of (a) a SEC-fractionalized BB₉ macroinitiator, (b) linear $tBA_{21}BB_9tBA_{21}$, and (c) cyclic $tBA_{31}BB_{10}$.

Figure S2. ¹H NMR spectra of (a) hydroxyl-terminated BB_n and (b) a SEC-fractionated BB_9 macroinitiator.

Figure S3. ¹H NMR spectra of (a) linear $tBA_{21}BB_9tBA_{21}$, (b) cyclic $tBA_{31}BB_{10}$, (c) linear $AA_{21}BB_9AA_{21}$, and (d) cyclic $AA_{33}BB_{10}$.

Figure S4. DSC thermograms of (a) linear $AA_{21}BB_9AA_{21}$, (b) cyclic $AA_{33}BB_{10}$, (c) cyclic $AA_{51}BB_{18}$, (d) linear $AA_{44}BB_9AA_{44}$, and (e) cyclic $AA_{100}BB_9$.

	$T_{\rm g, BB}(^{\circ}{\rm C})$	$T_{\rm g, AA}$ (°C)	$T_{\rm i}$ (°C)	$\Delta H_{\rm i} ({\rm kJ} {\rm mol}^{-1})$
linear AA ₂₁ BB ₉ AA ₂₁	58	106	140	0.56
cyclic AA ₃₃ BB ₁₀	49	94	145	0.50
cyclic AA ₅₁ BB ₁₈	33	-	111	2.33
linear tBA ₅₀ BB ₈ tBA ₅₀	37	-	-	-
linear AA44BB9AA44	-	114	-	-
cyclic AA ₁₀₀ BB ₉	-	115	-	-

Table S1. T_i , $T_{g, AA}$, $T_{g, BB}$, and ΔH_i of linear AA₂₁BB₉AA₂₁, cyclic AA₃₃BB₁₀, cyclic AA₅₁BB₁₈, linear *t*BA₅₀BB₈*t*BA₅₀, linear AA₄₄BB₉AA₄₄, and cyclic AA₁₀₀BB₉

Figure S5. WAXD intensity profiles of linear $AA_{21}BB_9AA_{21}$, cyclic $AA_{33}BB_{10}$, cyclic $AA_{51}BB_{18}$, linear $AA_{44}BB_9AA_{44}$, and cyclic $AA_{100}BB_9$. The dashed line marks the peak position of smectic layer reflection ($q = 3.86 \text{ nm}^{-1}$). The reflections at $q < 3.86 \text{ nm}^{-1}$ are ascribed to the lamellar microdomains.

Figure S6. TEM images of self-assembled structures from linear $AA_{21}BB_9AA_{21}$ and cyclic $AA_{33}BB_{10}$ using an initial THF solution with a polymer concentration (c_0) of 1.0 and 10 mg/mL. (a) Linear, $c_0 = 1.0$ mg/mL. (b) Cyclic, $c_0 = 1.0$ mg/mL. (c) Linear, $c_0 = 10$ mg/mL. (d) Cyclic, $c_0 = 10$ mg/mL.

Figure S7. Models for cylindrical micelles self-assembled from (a) linear $AA_{21}BB_9AA_{21}$ and $AA_{25}BB_{14}AA_{25}$ and (b) cyclic $AA_{33}BB_{10}$ and $AA_{51}BB_{18}$. Light blue and red indicate $AA_{(2)m}$ and BB_n segments, respectively.

Figure S8. A photograph for an experimental setup to apply an electric field. Two platinum plates (10 mm \times 40 mm \times 1.0 mm) were equipped to the inside walls of a quartz cell facing each other with 2 mm separation. Wire leads were soldered to the platinum plates to connect to a Kawaguchi Electric Works V7032A high voltage DC power supply. A suspension (0.4 mL) of self-assembled linear AA_mBB_nAA_m, cyclic AA_{2m}BB_n, or linear AA₁₃₄St₃₄AA₁₃₄ was added to the cell, and electric field was applied at 1.5 V/mm for 2 min.

Figure S9. TEM images of self-assembled structures from linear $AA_{134}St_{34}AA_{134}$ (a) before and (b) after applying an electric field of 1.5 V/mm for 2 min.