Electronic Supplementary Information (ESI)

Preparation of emissive glucose-containing polymer nanoparticles and

their cell imaging applications

Ke Wang,^{*a*} Xiaoyong Zhang,^{**a,b*} Xiqi Zhang,^{*a,c*} Chunping Ma,^{*a*} Zhen Li,^{*a*} Zengfang Huang,^{*a*} Qingsong Zhang,^{*a*} Yen Wei^{**a*}

^a Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.

^b Department of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China

^c Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Scheme S1. Synthetic route of PhE-GM-Glu.

Fig. S1 XPS spectrum of PhE-GM- Glu FGNs showing the presence of carbon, nitrogen, oxygen, sulphur.

Fig. S2 XPS spectra of PhE-GM-Glu FGNs: (A) C 1s spectrum; (B) N 1s spectrum; (C) O 1s spectrum; (D) S 2p spectrum.

Fig. S3 The fluorescence time traces of PhE-GM-Glu FGNs monitored at 580 nm ($\lambda ex = 488$ nm) for 30 min, suggesting the durable photostability of the PhE-GM-Glu FGNs.

Fig. S4 The fluorescence spectra of PhE-GM-Glu FGNs in water at different concentrations ($\lambda ex = 488 \text{ nm}$).

Fig. S5 Intensity of the aggregate emission vs. logarithm of the concentration of PhE-GM-Glu ($\lambda ex = 488 \text{ nm}$ and $\lambda em = 580 \text{ nm}$).