Supporting Information

A PEGylated colorimetric and turn-on fluorescent sensor based on BODIPY for Hg(II) detection in water

Bin Wu¹, Lei Xu¹, Shangfeng Wang¹, Yong Wang² and Weian Zhang¹*

¹Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

²State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

Fig. S1. ¹H NMR spectrum of compound DMS1 in CDCl₃.

Fig. S2. ¹H NMR spectrum of PEG-DMS2 in DMSO- d_6 .

Fig. S3. UV-Vis spectra of 5 μ M PEG-DMS2 in MeCN/water mixtures with different MeCN fractions.

Fig. S4. UV-Vis spectra of PEG-DMS1 (A) and PEG-DMS2 (B) in pure water at different concentrations. Insets: the Q-band absorbance vs. the concentration of PEG-DMS.

Fig. S5. UV-Vis (A) and fluorescence (B) titration of 5 μ M DMS1 with Hg²⁺ (3 equiv.) in MeCN. Insets: absorbance (inset A) and fluorescence (inset B) intensity as a function of the molar ratio ([Hg²⁺]/[DMS1]).

Fig. S6. UV-Vis (A) and fluorescence (B) titration of 5 μ M DMS2 with Hg²⁺ (5 equiv.) in MeCN. Insets: absorbance (inset A) and fluorescence (inset B) intensity as a function of the molar ratio ([Hg²⁺]/[DMS2]).

Fig. S7. UV-Vis (A) and fluorescence (B) titration of 5 μ M DMS1 with Hg²⁺ (3 equiv.) in a MeCN-H₂O mixture (5/5, v/v). Insets: the absorbance (inset A) and fluorescence (inset B) intensity as a function of the molar ratio ([Hg²⁺]/[DMS1]).

Fig. S8. UV-Vis (A) and fluorescence (B) titration of 5 μ M DMS2 with Hg²⁺ (2 equiv.) in a MeCN-H₂O mixture (5/5, v/v).

Fig. S9. The fluorescence intensity of PEG-DMS (5 μ M) as a function of Hg²⁺ concentration in water. (A) PEG-DMS1, Hg²⁺ concentration: 0 – 5 μ M, $\lambda_{ex} = 510$ nm; (B) PEG-DMS2, Hg²⁺ concentration: 0 – 6.67 μ M, $\lambda_{ex} = 590$ nm.

The method for determining the limit of detection (LOD):¹

LOD = $3\sigma/K$, σ : standard deviation from the blank measurement in the absence of Hg²⁺; *K*: slope of the calibration plot.

Fig. 10. Benesi-Hildebrand plot of PEG-DMS with Hg²⁺. (A) PEG-DMS1; (B) PEG-DMS2.

The method for determining stability constant (K_s) via Benesi-Hildebrand plot:²

$$\frac{1}{F - F_{min}} = \frac{1}{F_{max} - F_{min}} \left[1 + \frac{1}{K_s[X]^n}\right]$$

F: fluorescence intensity at λ_{em} ; F_{min} and F_{max} denote the fluorescence signals at minimal [X] and maximal [X]; [X]: analyte concentration; n: stoichiometry of binding.

Probes	$\lambda_{ex}/\lambda_{em}$ (nm)	Detection medium	Limit of detection
NN COH NN COH NN COH NN COH NN COH	530/580	water	2.3 ppb ¹
	370/655	MeCN : HEPES buffer (1:1, v/v)	3 ppb ²
	500/600	THF	not reported ³
	640/655	THF	not reported ⁴
	510/572	MeCN : water (2:3, v/v)	not reported ⁵
	380/566	PBS solution to obtain nanoparticles	<1 ppb ⁶
toor of the second seco	500/584	water	3.5 ppb at 25 ℃ ⁷ 1.6 ppb at 40 ℃
	420/593	HEPES buffer pH = 7.0	20 ppb ⁸
PEG-DMS1	510/575	water	8.1 ppb

Table S1. Comparison of the properties of PEG-DMS with those literatures reported.

0 10 10 12 6 8 6 8 pН pН Fig. S11. Fluorescence intensity of PEG-DMS (5 µM) in water at different pH both in

1x10⁴

the absence and presence of Hg²⁺. (A) PEG-DMS1, 5 equiv. of Hg²⁺, $\lambda_{ex} = 510$ nm; (B) PEG-DMS2, 10 equiv. of Hg²⁺, $\lambda_{ex} = 590$ nm.

Fig. 12. Time-dependent fluorescence intensity of PEG-DMS (5 µM) upon addition of Hg²⁺. 5 equiv. of Hg²⁺ for PEG-DMS1 ($\lambda_{ex} = 510$ nm); 10 equiv. of Hg²⁺ for PEG-DMS2 ($\lambda_{ex} = 590 \text{ nm}$).

Fig. 13. CLSM images of HeLa cells incubated within 20 μ M of PEG-DMS1 for 12 h before (A) and after (B) being treated 20 μ M of Hg²⁺ for 0.5 h. The images from left to right were PEG-DMS1 fluorescence (emission collected at 620 – 730 nm upon $\lambda_{ex} = 633$ nm), nuclei staining with DAPI (emission collected at 425 – 475 nm upon $\lambda_{ex} = 405$ nm), bright field and overlays of images.

References

- 1. K. Tiwari, M. Mishra and V. P. Singh, RSC Adv., 2013, 3, 12124-12132.
- 2. N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130-1172.
- 3. K.-B. Li, H. Wang, Y. Zang, X.-P. He, J. Li, G.-R. Chen and H. Tian, *ACS Appl. Mater. Interfaces*, 2014, **6**, 19600-19605.
- 4. Y. Zhao, X. Lv, Y. Liu, J. Liu, Y. Zhang, H. Shi and W. Guo, *J. Mater. Chem.*, 2012, **22**, 11475.
- 5. A. Coskun and E. U. Akkaya, J. Am. Chem. Soc., 2006, 128, 14474-14475.
- 6. S. Atilgan, I. Kutuk and T. Ozdemir, Tetrahedron Lett., 2010, 51, 892-894.
- X. J. Jiang, C. L. Wong, P. C. Lo and D. K. Ng, *Dalton Trans.*, 2012, 41, 1801-1807.
- 8. Y. Qu, X. Zhang, Y. Wu, F. Li and J. Hua, Polym. Chem., 2014, 5, 3396-3403.
- 9. J. Hu, C. Li and S. Liu, Langmuir, 2010, 26, 724-729.
- 10. C. Ma, F. Zeng, L. Huang and S. Wu, J. Phys. Chem. B, 2011, 115, 874-882.