Supporting Information for

"Synthesis and Self-Assembly of Fluorine-Containing Amphiphilic Graft Copolymer Bearing Perfluorocyclobutyl Aryl Ether-Based Backbone and Poly(acrylic acid) Side Chains"

Hao Liu,¹ Sen Zhang,¹ Chun Feng,^{1,*} Yongjun Li,^{1,2} Guolin Lu,¹ Xiaoyu Huang^{1,*}

¹ Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China

² State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China

Experimental Section

Materials

tert-Butyl acrylate (*t*BA, Aldrich, 98%) was washed with 5% aqueous NaOH solution to remove the inhibitor, then washed with water, dried over CaCl₂ and distilled twice from CaH₂ under reduced pressure prior to use. Copper (I) bromide (CuBr, Aldrich, 98%) was purified by stirring overnight over CH₃CO₂H at room temperature, followed by washing the solid with ethanol, diethyl ether, and acetone prior to drying at 40°C *in vacuo* for one day. Anisole (Aldrich, 99%) and diphenyl ether (Aldrich, 99%) were dried over CaH₂ and distilled under reduced pressure prior

to use. *N*-Bromosuccinimide (NBS, Aldrich, 99%) was recrystallized from water and dried *in vacuo* at 35°C for one day. Benzoyl peroxide (BPO, Alfa Aesar, 97%) was purified by dissolving in acetone and precipitating in water followed by drying *in vacuo* at room temperature for one day. *N*-Phenyl-1-naphthylamine (PNA, Alfa Aesar, 97%) was purified by recrystallization in ethanol three times. Tetrahydrofuran (THF, Aldrich, 99%), dichloromethane (CH₂Cl₂, Aldrich, 99.5%), and toluene (Aldrich, 99%) were dried over CaH₂ and distilled from sodium and benzophenone under N₂ prior to use. 2-Methyl-1,4-bistrifluorovinyloxybenzene (MBTFVB) and 4-methoxytrifluorovinyloxybenzene were prepared according to previous report.¹ *N*,*N*,*N'*,*N'*,*N'*, pentamethyldiethylenetriamine (PMDETA, Aldrich, 99%), acetonitrile (CH₃CN, Aldrich, 99.8%), trifluoroacetic acid (TFA, Aldrich, 99%), and carbon tetrachloride (CCl₄, Aldrich, 99.5%) were used as received.

Measurements

FT-IR spectra were recorded on a Nicolet AVATAR-360 FT-IR spectrophotometer with a resolution of 4 cm⁻¹. All ¹H (500 MHz), ¹³C (125 MHz), and ¹⁹F (470 MHz) NMR analyses were performed on a Bruker Avance 500 spectrometer in CDCl₃, acetone- d_6 , and DMSO- d_6 , tetramethylsilicone (¹H NMR) and CDCl₃ (¹³C NMR) were used as internal standards and CF₃CO₂H was used as external standard for ¹⁹F NMR. The bromine content was determined by the titration with Hg(NO₃)₂. Relative molecular weights and molecular weight distributions were measured by conventional gel permeation chromatography (GPC) system equipped with a Waters 1515 Isocratic HPLC pump, a Waters 2414 refractive index detector, and a set of Waters Styragel columns (HR3 (500-30,000), HR4 (5,000-600,000) and HR5 (50,000-4,000,000), 7.8×300 mm, particle size: 5 μ m). GPC measurements were carried out at 35°C using tetrahydrofuran (THF) as eluent with a flow rate of 1.0 mL/min. The system was calibrated with linear polystyrene standards. Thermogravimetry analysis (TGA) measurements were run on a TA Q500 system under N₂ purge with a heating rate of 10°C/min. Steady-state fluorescence spectra were measured at 20°C on a Hitachi F-2700 fluorescence spectrophotometer with the bandwidth of 5 nm for excitation and emission, the emission intensity at 418 nm was recorded to determine the critical micelle concentration (*cmc*), where the excitation wavelength (λ_{ex}) was 340 nm. TEM images were obtained by a JEOL JEM-1230 instrument operated at 80 kV.

Preparation of PMBTFVB Homopolymer

PMBTFVB **1** homopolymer was prepared via thermal step-growth cycloaddition polymerization of MBTFVB aryl TFVE monomer followed by end-capping with 4methoxytrifluorovinyloxybenzene according to previous literatures.^{2,3} GPC: M_n = 4,200 g/mol, M_w/M_n = 1.21. FT-IR: ν (cm⁻¹): 3053, 2933, 1599, 1498, 1315, 1267, 1203, 1120, 1009, 962, 925, 813, 743. ¹H NMR (CDCl₃): δ (ppm): 2.07, 2.26 (3H, CH₃), 3.75 (3H, OCH₃), 6.99, 7.09 (3H, phenyl). ¹³C MNR (CDCl₃): δ (ppm): 16.1 (CH₃), 55.4 (OCH₃), 105.5, 109.4, 112.8 (4C, cyclobutyl), 116.5, 121.3, 131.2, 148.4 (3C, phenyl). ¹⁹F NMR (CDCl₃): δ (ppm): -128.2 to -132.3 (6F, cyclobutyl-*F*₆).

Mono-Bromination of PMBTFVB

The pendant methyls of PMBTFVB 1 homopolymer were mono-brominated by NBS and BPO. In a typical procedure, PMBTFVB 1 ($M_{n,GPC} = 4,200 \text{ g/mol}, M_w/M_n =$ 1.21, 1.00 g, 3.52 mmol -CH₃ group), NBS (0.187 g, 1.05 mmol), and BPO (0.171 g, 0.70 mmol) were first added to a 500 mL three-neck flask (flame-dried prior to use) fitted with a reflux condenser followed by deoxygenating under N_2 . Next, 200 mL of CCl₄ was charged via a gastight syringe and the solution was refluxed at 80°C for 24 h. After filtration, CCl₄ was rotary evaporated from the filtrate. The obtained solid was dissolved in ethyl acetate (250 mL) and the resulting solution was washed with distilled water (200 mL×2) followed by drying over MgSO₄. The solution was concentrated and precipitated into methanol. After repeated purification by dissolving in THF and precipitating in methanol, 0.683 g of white powder, PMBTFVB-Br 2a macroinitiator, was obtained after drying *in vacuo* overnight. GPC: $M_n = 5,800$ g/mol, $M_{\rm w}/M_{\rm n}$ = 1.19. EA: Br%: 6.71%. ¹H NMR (CDCl₃): δ (ppm): 1.97, 2.19 (3H, CH₃), 3.67 (3H, OCH₃), 4.16, 4.34 (2H, CH₂Br), 6.88, 7.04, 7.15 (3H, phenyl). ¹³C MNR (CDCl₃): δ (ppm): 15.3 (CH₃), 24.5 (CH₂Br), 54.5 (OCH₃), 105.0, 107.9, 111.9 (4C, cyclobutyl), 116.7, 118.6, 120.7, 129.4, 148.0 (3C, phenyl). ¹⁹F NMR (CDCl₃): δ (ppm): -127.2 to -132.8 (6F, cyclobutyl- F_6).

ATRP Graft Copolymerization of tBA

ATRP graft copolymerization of *t*BA was initiated by PMBTFVB-Br **2** macroinitiator using CuBr/PMDETA as catalytic system. In a typical procedure,

PMBTFVB-Br **2a** ($M_{n,GPC} = 5,800$ g/mol, $M_w/M_n = 1.19$, Br% = 6.71%, 195 mg, 0.1636 mmol -CH₂Br group) and CuBr (23.4 mg, 0.1636 mmol) were first added to a 10 mL Schlenk flask (flame-dried under vacuum prior to use) sealed with a rubber septum for degassing and kept under N₂. Next, tBA (2.37 mL, 16.36 mmol), anisole (1.18 mL), and PMDETA (34.16 µL, 0.1636 mmol) were introduced via a gastight syringe. The flask was degassed by three cycles of freezing-pumping-thawing and the mixture was stirred at room temperature for 20 min so that the mixture became homogeneous. The flask was immersed into an oil bath preset at 80°C to start the polymerization. The polymerization was terminated by putting the flask into liquid N_2 after 30 min. The reaction mixture was diluted by THF and passed through an Al₂O₃ column to remove the residual copper catalyst. The solution was concentrated and precipitated into methanol/ H_2O (v:v = 1:1). After repeated purification by dissolving in THF and precipitating in methanol/ H_2O (v:v = 1:1), 165.0 mg of white powder, PMBTFVB-g-PtBA 3a graft copolymer, was obtained after drying in vacuo overnight. GPC: $M_n = 10,500 \text{ g/mol}, M_w/M_n = 1.32$. FT-IR: $\nu \text{ (cm}^{-1})$: 2977, 2938, 1729 ($\nu_{c=0}$), 1481, 1448, 1395, 1369, 1257, 1152, 965, 845, 809, 750. ¹H NMR (acetone- d_{δ}): δ (ppm): 1.36 (9H, C(CH₃)₃), 1.71 (2H, CH₂CHCO₂), 2.18 (3H, C₆H₅CH₃ and 1H, CH_2CHCO_2), 3.66 (3H, OCH₃), 6.92-7.26 (3H, phenyl). ¹³C MNR (CDCl₃): δ (ppm): 15.3 (CH₃), 27.5 (3C, CO₂C(CH₃)₃), 35.8, 37.3 (CH₂CHCO), 42.1 (CH₂CHCO), 80.5 (CO₂C(CH₃)₃), 105.0, 107.8, 111.7 (4C, cyclobutyl), 116.5, 118.7, 120.8, 129.3, 148.1 (3C, phenyl), 173.3 ($CO_2C(CH_3)_3$). ¹⁹F NMR (acetone- d_6): δ (ppm): -126.6 to -133.0 (6F, cyclobutyl- F_6).

Acidolysis of PMBTFVB-g-PtBA

In a typical procedure, PMBTFVB-*g*-P*t*BA **3a** ($M_{n,GPC} = 10,500$ g/mol, $M_w/M_n = 1.32, 165$ mg), CH₂Cl₂ (25 mL), and TFA (5.0 mL) were added to a 50 mL three-neck flask. The solution was stirred at 0°C for 1 h followed by stirring at room temperature for another 24 h. The solution was concentrated and precipitated into cold *n*-hexane. After filtration, 75.2 mg of white powder, PMBTFVB-*g*-PAA **4a**, was obtained after drying *in vacuo* overnight. ¹H NMR (DMSO-*d*₆): δ (ppm): 1.49, 1.75 (2H, CH₂CHCO₂), 2.19, 2.26 (3H, C₆H₅CH₃ and 1H, CH₂CHCO₂), 6.83-7.29 (3H, phenyl), 12.30 (1H, COO*H*). FT-IR: *v* (cm⁻¹): 3386 (*v*_{OH}), 2977, 2938, 1724 (*v*_{c=0}), 1452, 1390, 1369, 1257, 1152, 965, 845, 750.

Determination of Critical Micelle Concentration

PNA was used as fluorescence probe to measure the *cmc* of PMBTFVB-*g*-PAA **4** amphiphilic graft copolymer. Acetone solution of PNA (2 mM) was added to a large amount of water until the concentration of PNA reached 0.002 mM. Next, different amounts of THF solution of PMBTFVB-*g*-PAA **4** graft copolymer (1, 0.1, 0.01, or 0.001 mg/mL) were added to water containing PNA ([PNA] = 0.002 mM).

Micellar Morphology

PMBTFVB-g-PAA 4 graft copolymer was first dissolved in THF with different concentrations. Next, deionized water was added slowly (0.36 mL/h) to 1 g of THF stock solution until the desired water content was reached. The solution was sealed

with a PTFE plug for equilibration under stirring for another 12 h. The solution was then dialyzed against deionized water with slow stirring for 5 days to remove THF, and deionized water was changed twice one day. pH of micellar solution was about 4.9-5.1. For TEM studies, a drop of micellar solution was deposited on an electron microscopy copper grid coated with carbon film and the water evaporated at room temperature.

References and Notes

- (1) Kennedy, A. P.; Babb, D. A.; Bermmer, J. N.; Pasztor, A. J. J. Polym. Sci. Polym.
- Chem. 1995, 33, 1859-1865.
- (2) Liu, H.; Li, Y. J.; Zhang, S.; Yang, D.; Hu, J. H.; Huang, X. Y. J. Polym. Sci.
 Polym. Chem. 2011, 49, 11-22.
- (3) Liu, H.; Zhang, S.; Li, Y. J.; Yang, D.; Hu, J. H.; Huang, X. Y. Polymer 2010, 51, 5198-5206.

Sample	NBS	Br‰ ^b	$M_{\rm n,GPC}^{\rm c}$	$M_{ m w}/M_{ m n}^{ m c}$	$N_{\rm ATRP}^{\rm d}$	$D_{\rm ATRP}^{\rm e}$
	(eq.)	(%)	(KDa)			(%)
2a	0.3	6.71	5.8	1.19	7.6	26.5
2b	0.7	12.11	5.8	1.18	14.5	51.2
2c	1.0	16.23	6.1	1.19	20.4	72.1

Table S1. Preparation of PMBTFVB-Br 2 Macroinitiator^a

^a Reaction temperature: 80°C; reaction time: 24 h; feeding ratio: [methyl]:[BPO] = 1:0.2. ^b Determined by the titration with $Hg(NO_3)_2$. ^c Measured by GPC in THF at 35°C. ^d The number of benzyl bromide ATRP initiating group per chain obtained from ¹H NMR. ^e Density of benzyl bromide ATRP initiating group.

Figure S1. GPC traces of PMBTFVB-Br 2 and PMBTFVB-g-PtBA 3 in THF.

Figure S2. TGA (A) and DTG (B) curves (in N₂) of PMBTFVB-*g*-P*t*BA **3e** and PMBTFVB-*g*-PAA **4e** graft copolymer with a heating rate of 10°C/min.

Figure S3. Third heating DSC scan (in N_2) of PMBTFVB 1 with a heating rate of 10° C/min.