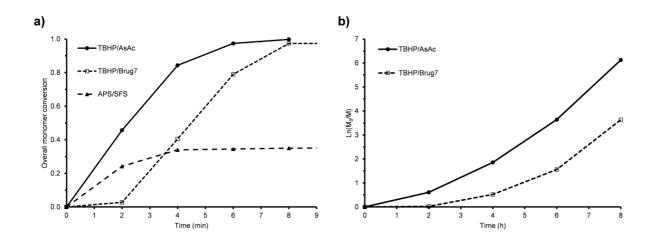
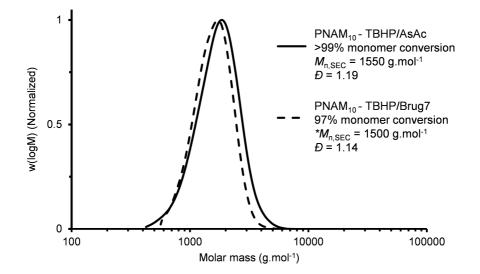
Supporting Information

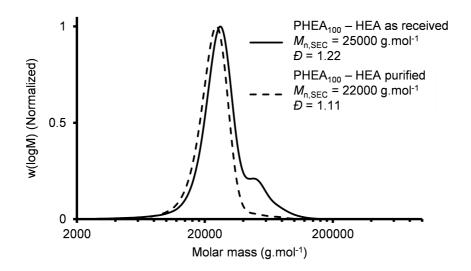
Preparation of Complex Multiblock Copolymers via Aqueous RAFT at Room Temperature

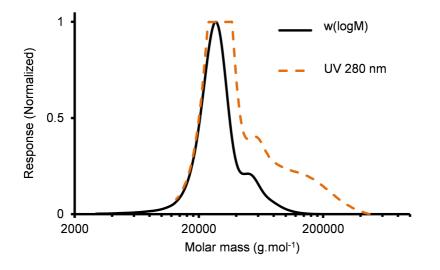

Liam Martin^{1,‡} Guillaume Gody^{1,‡} and Sébastien Perrier^{1,2,*}

¹ Department of Chemistry, The University of Warwick, CV4 7AL, United Kingdom.


² Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC 3052, Australia.

 \ddagger - These authors contributed equally.


* s.perrier@warwick.ac.uk, Tel: +44 2476 528085; Fax: +44 25476 524112


Figure S1 - a) Monomer conversion *vs* time and b) $\ln(M_0/M)$ *vs* time for RAFT of PNAM₁₀ in H₂O/dioxane at 25 °C using different redox pairs as initiator. [NAM]₀ = 3 M, [Ox]₀ = [Red]₀ = 3.0 10⁻³ M, H₂O:dioxane 70:30 (v:v), where [Ox]₀ is the initial concentration of the oxidizing agent (TBHP or APS) and [Red]₀ is the initial concentration of the reducing agent (AsAc, Brug7 or SFS).

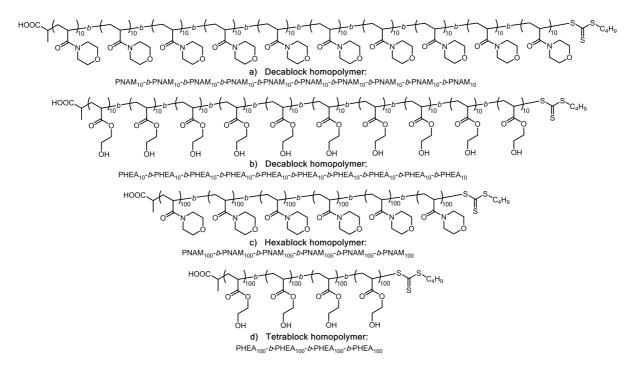

Figure S2 - DMF-SEC analysis of PNAM₁₀ prepared after 24 h of RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc (solid line) and TBHP/Brug7 (dashed line) as redox initiator. [NAM]₀ = 3.0 M, [TBHP]₀ = [Red]₀ = 3.0 10^{-3} M, H₂O:dioxane 70:30 (v:v), where [Red]₀ is the initial concentration of the reducing agent (AsAc or Brug7). * sample partially elutes with system peak at low molar mass.

Figure S3 - DMF-SEC of PHEA₁₀₀ prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator using HEA as received from Sigma Aldrich (solid line) and purified HEA (dashed line) [HEA]₀ = 3.0 M, [TBHP]₀ = 3.0 10^{-3} M, [TBHP]₀:[AsAc]₀ 1:0.5, [PABTC]₀/[TBHP]₀ = 7.

Figure S4 - DMF-SEC analysis of PHEA₁₀₀ prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator using HEA as received from Sigma Aldrich. [HEA]₀ = 3.0 M, [TBHP]₀ = $3.0 \ 10^{-3}$ M, [TBHP]₀:[AsAc]₀ 1:0.5, [PABTC]₀/[TBHP]₀ = 7.

Scheme S1 – Microstructures of multiblock homopolymers prepared in this work

Block	1	2	3	4	5	6	7	8	9	10
Monomer	NAM									
DP _{targeted}	10	10	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0
m _{CTA added} (mg)	67.6	-	-	-	-	-	-	-	-	-
m _{TBHP added} (mg)	0.51	0.17	0.26	0.32	0.43	0.51	0.64	0.73	0.75	0.75
m _{AsAc added} (mg)	0.50	0.17	0.25	0.31	0.42	0.50	0.62	0.71	0.73	0.73
$V_{H2O added}$ (mL)	0.412	0.588	0.588	0.588	0.588	0.588	0.588	0.453	0.453	0.453
V _{dioxane added} (mL)	0.176	-	-	-	-	-	-	-	-	-
% H₂O	70.1	85.0	90.0	92.5	94.0	95.0	95.7	96.1	96.5	96.8
V _{total} (mL) ^a	0.945	1.889	2.883	3.778	4.722	5.667	6.611	7.421	8.231	9.040
[Mon]₀ (mol.L⁻¹) ^b	3.00	1.50	1.00	0.75	0.60	0.50	0.43	0.38	0.34	0.31
[TBHP]₀ (mol.L ⁻¹) [¢]	6.00 10 ⁻³	1.00 10 ⁻³	1.00 10 ⁻³	9.38 10 ⁻⁴	1.00 10 ⁻³	1.00 10 ⁻³	1.07 10 ⁻³	1.09 10 ⁻³	1.01 10 ⁻³	9.22 10 ⁻⁴
[AsAc]₀ (mol.L⁻¹) ^c	3.00 10 ⁻³	5.00 10 ⁻⁴	5.00 10 ⁻⁴	4.69 10 ⁻⁴	5.00 10-4	5.00 10 ⁻⁴	5.36 10 ⁻⁴	5.46 10 ⁻⁴	5.07 10 ⁻⁴	4.61 10 ⁻⁴
[PABTC]₀/[TBHP]₀ ^d	50	150	100	80	60	50	40	35	34	34

Table S1 - Conditions used in preparation of $(PNAM_{10})_{10}$ *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	Multiblock poly(4-acryloyImorpholine) composition	Overall monomer conversion (%) ^a	M _{n,th} (g.mol ⁻¹) ^b	M _{n,SEC} (g.mol⁻¹) [¢]	Т
1	PNAM ₁₀	>99	1600	1000	1.17
2	PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	3000	1700	1.15
3	PNAM ₁₀ -b-PNAM ₁₀ -b-PNAM ₁₀	>99	4400	2500	1.16
4	PNAM10-b-PNAM10-b-PNAM10-b-PNAM10	96.5	5800	3500	1.18
5	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	7200	4400	1.16
6	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	8600	5400	1.18
7	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	10000	6600	1.19
8	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	11400	7500	1.21
9	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ -	>99	12900	9000	1.17
10	PNAM10-b-PNAM10-b-PNAM10-b-PNAM10-b-PNAM10- b-PNAM10-b	>99	14300	10100	1.19

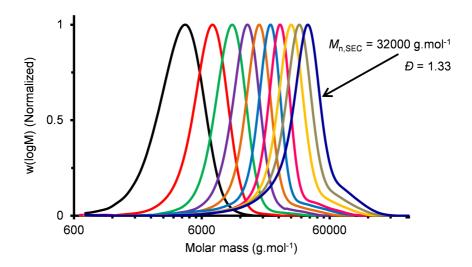
Table S2 - Monomer conversion and THF-SEC analysis of $(PNAM_{10})_{10}$ prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	1	2	3	4	5	6	7	8	9	10
Monomer	NAM	NAM	NAM	NAM	NAM	NAM	NAM	NAM	NAM	NAM
DP _{targeted}	10	10	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0	400.0
m _{CTA added} (mg)	67.6	-	-	-	-	-	-	-	-	-
m _{VA-044 added} (mg)	0.23	0.12	0.18	0.25	0.31	0.35	0.40	0.44	0.48	0.54
V _{H2O added} (mL)	0.470	0.588	0.588	0.588	0.588	0.352	0.352	0.352	0.352	0.352
V _{dioxane added} (mL)	0.118	-	-	-	-	-	-	-	-	-
% H₂O	80.0	90.0	93.3	95.0	96.0	96.4	96.8	97.1	97.3	97.5
V _{total} (mL) ^a	0.994	1.889	2.883	3.778	4.722	5.431	6.139	6.848	7.556	8.265
m _{VA-044total} (mg) ^b	0.23	0.13	0.19	0.26	0.32	0.37	0.42	0.46	0.51	0.56
[Mon]₀ (mol.L ⁻¹) [¢]	3.00	1.50	1.00	0.75	0.60	0.52	0.46	0.41	0.37	0.34
[VA-044] ₀ (mol.L ⁻¹)	7.50 10 ⁻⁴	2.17 10 ⁻⁴	2.07 10-4	2.11 10 ⁻⁴	2.08 10-4	2.10 10 ⁻⁴	2.10 10 ⁻⁴	2.06 10 ⁻⁴	2.07 10 ⁻⁴	2.11 10 ⁻⁴
[PABTC]₀/[VA-044]₀	400	691	483	356	288	249	220	201	181	162

Table S3 - Conditions used in preparation of $(PNAM_{10})_{10}$ *via* RAFT in H₂O/dioxane at 70 °C using VA-044 as thermal azoinitiator.

^a Represents the sum of the volume of the monomer added + volume of solvent + V_{total} from the previous block. ^b m_{VA-044} t_{otal} represents the sum of the initiator added m_{VA-044} added + the amount of initiator remaining from the previous block. ^c Represents the concentration of the monomer at the beginning of each block extension.

Block	Multiblock poly(4-acryloylmorpholine) composition	Overall monomer conversion (%) ^a	M _{n,th} (g.mol ⁻¹) ^b	M _{n,SEC} (g.mol⁻¹) [¢]	Т
1	PNAM ₁₀	>99	1600	1100	1.13
2	PNAM10-D-PNAM10	>99	3100	2100	1.10
3	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	4500	2900	1.10
4	PNAM10-D-PNAM10-D-PNAM10-D-PNAM10	>99	5900	3900	1.10
5	PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	7300	4800	1.10
6	PNAM ₁₀ -b-PNAM ₁₀ -b-PNAM ₁₀ -b-PNAM ₁₀ -b-PNAM ₁₀ -b-PNAM ₁₀	>99	8700	5900	1.09
7	PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	10100	6800	1.11
8	PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	11500	7400	1.13
9	PNAM ₁₀ - <i>b</i> -PNAM ₁₀	>99	12900	8300	1.13
10	PNAM ₁₀ - <i>b</i> -PNAM	>99	14300	9000	1.15


Table S4 - Monomer conversion and THF-SEC analysis of $(PNAM_{10})_{10}$ prepared *via* RAFT in H₂O/dioxane at 70 °C using VA-044 as thermal azoinitiator.

Block	1	2	3	4	5	6	7	8	9	10
Monomer	HEA									
DP _{targeted}	10	10	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	303.3	303.3	303.3	303.3	303.3	303.3	303.3	303.3	303.3	303.3
m _{CTA added} (mg)	62.3	-	-	-	-	-	-	-	-	-
m _{TBHP added} (mg)	1.18	0.47	0.59	0.78	0.98	0.94	1.10	1.26	1.41	1.57
m _{AsAc added} (mg)	1.16	0.46	0.58	0.77	0.97	0.93	1.08	1.24	1.39	1.55
V _{H2O added} (mL)	0.399	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571
V _{dioxane added} (mL)	0.171	-	-	-	-	-	-	-	-	-
% H₂O	70.0	85.0	90.0	92.5	94.0	95.0	95.7	96.3	96.7	97.0
V _{total} (mL) ^a	0.871	1.741	2.612	3.483	4.353	5.224	6.095	6.965	7.836	8.707
[Mon]₀ (mol.L ⁻¹) ^b	3.00	1.50	1.00	0.75	0.60	0.50	0.43	0.38	0.33	0.30
[TBHP]₀ (mol.L ⁻¹) [¢]	1.50 10 ⁻²	3.00 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³	2.00 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³
[AsAc]₀ (mol.L ⁻¹) [¢]	7.50 10 ⁻³	1.50 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³	1.50 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³
[PABTC]₀/[TBHP]₀ ^d	20	50	40	30	24	25	21	19	17	15

Table S5 - Conditions used in preparation of $(PHEA_{10})_{10}$ via RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	Multiblock poly(2-hydroxyethyl acrylate) composition	Overall monomer conversion (%) ^a	M _{n,th} (g.mol ⁻¹) ^{b}	M _{n,SEC} (g.mol⁻¹) [¢]	Т
1	PHEA ₁₀	>99	1400	3500	1.21
2	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	2500	6200	1.14
3	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	3700	9200	1.12
4	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	99	4800	12100	1.13
5	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	6000	14400	1.19
6	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>98	7100	17600	1.22
7	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	8300	19900	1.27
8	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	9400	25100	1.34
9	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>98	10500	29200	1.25
10	PHEA ₁₀ - <i>b</i> -PHEA	>98	11600	32000	1.33

Table S6 - Monomer conversion and DMF-SEC analysis of $(PHEA_{10})_{10}$ prepared via RAFT inH2O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Figure S5 - DMF-SEC chromatograms for $(PHEA_{10})_{10}$ prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

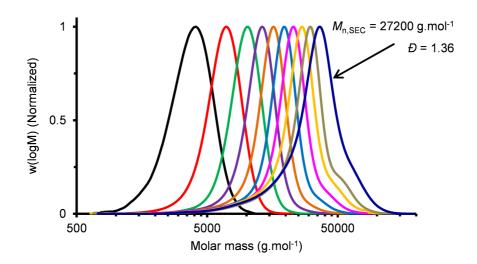

Block	1	2	3	4	5	6	7	8	9	10
Monomer	HEA									
DP _{targeted}	10	10	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0
m _{CTA added} (mg)	62.2	-	-	-	-	-	-	-	-	-
m _{VA-044 added} (mg)	0.84	0.56	0.84	1.12	1.41	1.69	1.97	2.25	2.53	2.81
V _{H2O added} (mL)	0.314	0.570	0.570	0.570	0.570	0.570	0.570	0.570	0.570	0.570
$V_{\text{dioxane added}}$ (mL)	0.171	-	-	-	-	-	-	-	-	-
% H₂O	70.0	85.0	90.0	92.5	94.0	95.0	95.7	96.3	96.7	97.0
V _{total} (mL) ^a	0.870	1.740	2.609	3.479	4.349	5.219	6.089	6.958	7.828	8.698
m _{VA-044total} (mg) ^b	0.84	0.60	0.87	1.16	1.46	1.76	2.05	2.34	2.64	2.93
[Mon]₀ (mol.L ⁻¹) [¢]	3.00	1.50	1.00	0.75	0.60	0.50	0.43	0.38	0.33	0.30
[VA-044] ₀ (mol.L ⁻¹)	2.99 10 ⁻³	1.06 10 ⁻³	1.03 10 ⁻³	1.03 10 ⁻³	1.04 10 ⁻³					
[PABTC]0/[VA-044]0	101	141	97	73	58	48	41	37	32	29

Table S7 - Conditions used in preparation of $(PHEA_{10})_{10}$ *via* RAFT in H₂O/dioxane at 70 °C using VA-044 as thermal azoinitiator.

^a Represents the sum of the volume of the monomer added + volume of solvent + V_{total} from the previous block. ^b m_{VA-044} t_{otal} represents the sum of the initiator added m_{VA-044} added + the amount of initiator remaining from the previous block. ^c Represents the concentration of the monomer at the beginning of each block extension.

Block	Multiblock poly(2-hydroxyethyl acrylate) composition	Overall monomer conversion (%) ^a	<i>M</i> _{n,th} (g.mol⁻¹) ^b	<i>M</i> _{n,SEC} (g.mol⁻¹) ^c	Т
1	PHEA ₁₀	>99	1400	3400	1.17
2	PHEA ₁₀ - <i>b</i> -PHEA ₁₀	98	2500	6100	1.12
3	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	98	3700	9100	1.10
4	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -HEA ₁₀	98	4800	11200	1.15
5	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	98	5900	13200	1.19
6	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -HEA ₁₀	99	7100	15700	1.24
7	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	97	8100	17500	1.31
8	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	9400	19600	1.37
9	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	>99	10600	23800	1.30
10	PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀ - <i>b</i> -PHEA ₁₀	98	11600	27200	1.36

Table S8 - Monomer conversion and DMF-SEC analysis of $(PHEA_{10})_{10}$ prepared via RAFT inH2O/dioxane at 70 °C using VA-044 as thermal azoinitiator.

Figure S6 - DMF-SEC chromatograms for $(PHEA_{10})_{10}$ prepared *via* RAFT in H₂O/dioxane at 70 °C using VA-044 as thermal azoinitiator.

Table S9 - Conditions used in preparation	of P(NAM ₁₀₀) ₆	<i>via</i> RAFT	in H ₂ O/dioxane	at 25 °C using
TBHP/AsAc redox pair as initiator.				

Block	1	2	3	4	5	6
Monomer	NAM	NAM	NAM	NAM	NAM	NAM
DP _{targeted}	100	100	100	100	100	100
m _{monomer added} (g)	1.00	1.00	1.00	1.00	1.00	1.00
m _{CTA added} (mg)	168.9	-	-	-	-	-
m _{TBHP added} (mg)	0.21	0.32	0.60	0.85	0.94	1.20
m _{AsAc added} (mg)	0.21	0.31	0.58	0.83	0.92	1.18
V _{H2O added} (mL)	1.323	1.470	1.470	2.651	1.470	2.651
$V_{dioxane added}$ (mL)	0.147	-	-	-	-	-
% H ₂ O	90.0	95.0	96.7	97.9	98.3	98.7
V _{total} (mL) ^a	2.361	4.722	7.084	10.625	12.987	16.528
[Mon]₀ (mol.L ⁻¹) ^{b}	3.00	1.50	1.00	0.67	0.55	0.43
[TBHP]₀ (mol.L ⁻¹) [¢]	1.00 10 ⁻³	7.50 10 ⁻⁴	9.35 10 ⁻⁴	8.89 10 ⁻⁴	8.02 10 ⁻⁴	8.09 10 ⁻⁴
[AsAc]₀ (mol.L ⁻¹) [¢]	5.00 10 ⁻⁴	3.75 10 ⁻⁴	4.68 10 ⁻⁴	4.45 10 ⁻⁴	4.01 10 ⁻⁴	4.05 10 ⁻⁴
[PABTC]₀/[TBHP]₀ ^d	30	20	11	7	7	5
•						

Table S10 - Monomer conversion and DMF-SEC analysis of $(PNAM_{100})_6$ prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	Multiblock poly(4-acryloyImorpholine) composition	Overall monomer conversion (%) ^a	<i>M</i> _{n,th} (g.mol⁻¹) [₺]	M _{n,SEC} (g.mol⁻¹) ^c	Ð ^c
1	PNAM ₁₀₀	97	13900	13100	1.07
2	PNAM100- <i>b</i> -PNAM100	>99	28000	37700	1.07
3	PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀	>99	42200	43700	1.09
4	PNAM100-b-PNAM100-b-PNAM100-b-PNAM100	>99	56300	59400	1.13
5	PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀ - <i>b</i> -PNAM ₁₀₀	>99	70400	73200	1.21
6	PNAM100- <i>b</i> -PNAM100- <i>b</i> -PNAM100- <i>b</i> -PNAM100- <i>b</i> -PNAM100- <i>b</i> -PNAM100	>99	84500	84700	1.31
a Determine	d by ¹ H NMR using eq. 1 ^b Determined using eq. 2	^c Determined using	DME-SEC		

Block	1	2	3	4
Monomer	HEA	HEA	HEA	HEA
DP _{targeted}	100	100	100	100
m _{monomer added} (mg)	400.0	400.0	400.0	400.0
m _{CTA added} (mg)	8.0	-	-	-
m _{TBHP added} (mg)	0.45	0.30	0.45	0.60
m _{AsAc added} (mg)	0.45	0.30	0.45	0.59
V _{H2O added} (mL)	0.890	1.272	1.272	1.272
V _{dioxane added} (mL)	0.382	-	-	-
% H₂O	70.0	85.0	90.0	92.5
V _{total} (mL) ^a	1.672	3.343	5.015	6.687
[Mon] ₀ (mol.L ⁻¹) ^{b}	2.00	1.00	0.67	0.50
[TBHP]₀ (mol.L ⁻¹) [¢]	3.00 10 ⁻³	1.00 10 ⁻³	1.00 10 ⁻³	1.00 10 ⁻⁴
[AsAc]₀ (mol.L ⁻¹) [¢]	1.50 10 ⁻³	5.00 10-4	5.00 10 ⁻⁴	5.00 10 ⁻⁵
[PABTC]₀/[TBHP]₀ ^d	6.7	10.0	6.7	5.0

Table S11 - Conditions used in preparation of $(PHEA_{100})_4$ via RAFT in H2O/dioxane at 25 °C usingTBHP/AsAc redox pair as initiator.

_	Block	Multiblock poly(2-hydroxyethyl acrylate) composition	Overall monomer conversion (%) ^a	<i>M</i> _{n,th} (g.mol⁻¹) [₺]	<i>M</i> _{n,SEC} (g.mol⁻¹) [¢]	Т
	1	PHEA ₁₀₀	>99	11800	22200	1.11
	2	PHEA100- <i>b</i> -PHEA100	>99	23200	50900	1.13
	3	PHEA100- <i>b</i> -PHEA100- <i>b</i> -PHEA100	>99	35100	67300	1.21
	4	PHEA100- <i>b</i> -PHEA100- <i>b</i> -PHEA100- <i>b</i> -PHEA100	>99	46700	80600	1.50

Table S12 - Monomer conversion and DMF-SEC analysis of $(PHEA_{100})_4$ prepared via RAFT inH2O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Table S13 - Conditions used in preparation of the low DP acrylamido heptablock copolymer *via* RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator.

Block	1	2	3	4	5	6	7
Monomer	NAM	NIPAM	NAM	DMA	NAM	DEA	NAM
DP _{targeted}	10	10	10	10	10	10	10
m _{monomer added} (mg)	600.0	481.0	600.0	421.0	600.0	540.6	600.0
m _{CTA added} (mg)	101.3	-	-	-	-	-	-
m _{TBHP added} (mg)	0.77	0.77	0.38	0.64	0.59	2.25	0.77
m _{AsAc added} (mg)	0.75	0.75	0.37	0.62	0.58	2.20	0.75
V _{H2O added} (mL)	0.617	1.417	0.882	0.979	0.882	0.806	0.882
V _{dioxane added} (mL)	0.265	-	-	-	-	-	-
% H₂O	70.0	88.5	91.7	93.6	94.7	95.5	96.1
V _{total} (mL) ^a	1.417	2.883	4.250	5.666	7.083	8.500	9.917
[Mon]₀ (mol.L ⁻¹) ^b	3.00	1.50	1.00	0.75	0.60	0.50	0.43
[TBHP]₀ (mol.L ⁻¹) [¢]	6.00 10 ⁻³	2.93 10 ⁻³	9.76 10 ⁻⁴	1.22 10 ⁻³	9.02 10 ⁻⁴	2.87 10 ⁻³	8.38 10 ⁻⁴
[AsAc]₀ (mol.L ⁻¹) [¢]	3.00 10 ⁻³	1.47 10 ⁻³	4.88 10 ⁻⁴	6.10 10 ⁻⁴	4.51 10 ⁻⁴	1.44 10 ⁻⁸	4.19 10 ⁻⁴
[PABTC]₀/[TBHP]₀ ^d	50	51	102	61	67	17	51

Table S14 - Monomer conversion and DMF-SEC analysis of the low DP acrylamido heptablockcopolymer prepared via RAFT in H2O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	Multiblock copolymer composition	Overall monomer conversion (%) ^a	<i>М</i> _{n,th} (g.mol ⁻¹) ^b	M _{n,SEC} (g.mol⁻¹) ^c	Т
1	PNAM ₁₀	99	1600	1100	1.13
2	PNAM ₁₀ - <i>b</i> -PNIPAM ₁₀	99	2800	2800	1.13
3	PNAM10-b-PNIPAM10-b-PNAM10	99	4200	4400	1.13
4	PNAM10-b-PNIPAM10-b-PNAM10-b-PDMA10	99	5100	6200	1.11
5	PNAM ₁₀ - <i>b</i> -PNIPAM ₁₀ - <i>b</i> -PNAM ₁₀ - <i>b</i> -PDMA ₁₀ - <i>b</i> -PNAM ₁₀	>99	6500	7900	1.09
6	PNAM ₁₀ -b-PNIPAM ₁₀ -b-PNAM ₁₀ -b-PDMA ₁₀ -b- PNAM ₁₀ -b-PDEA ₁₀	>99	7800	9400	1.12
7	PNAM ₁₀ -b-PNIPAM ₁₀ -b-PNAM ₁₀ -b-PDMA ₁₀ -b- PNAM ₁₀ -b-PDEA ₁₀ -b-PNAM ₁₀	>99	9200	11200	1.15

Block	1	2	3	4	5
Monomer	NAM	DMA	NIPAM	DEA	NAM
DP _{targeted}	100	100	100	100	100
n _{monomer added} (mg)	600.0	421.3	481.0	541.0	600.0
m _{CTA added} (mg)	10.1	-	-	-	-
m _{TBHP added} (mg)	0.13	0.26	0.36	0.64	0.66
m _{AsAc added} (mg)	0.06	0.25	0.35	0.62	0.65
V _{H2O added} (mL)	0.794	0.979	2.125	0.806	1.590

 $V_{\text{dioxane added}}$ (mL)

[Mon]₀ (mol.L⁻¹)^{**b**}

[TBHP]₀ (mol.L⁻¹)^c

[AsAc]₀ (mol.L⁻¹)^c

[PABTC]₀/[TBHP]₀^d

% H₂O

V_{total} (mL)^a

0.088

90.0

1.417

3.00

30.0

1.00 10⁻³

2.50 10-4

Table S15 - Conditions used in preparation of the high DP acrylamido pentablock copolymer *via* RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator.

^a Represents the sum of the volume of the monomer added + volume of solvent + V_{total} from the previous block. ^b Represents the concentration of the monomer at the beginning of each block extension. ^c The concentration of TBHP/AsAc at the beginning of each block, assuming full consumption of both TBHP and AsAc in the previous block. ^d The theoretical ratio of PABTC chain transfer agent to TBHP oxidant, assuming full consumption of TBHP in previous block.

95.3

2.833

1.31

15.0

1.00 10⁻³

5.00 10-4

97.8

4.958

0.69

11.0

8.01 10-4

4.00 10-4

98.2

6.375

0.86

6.0

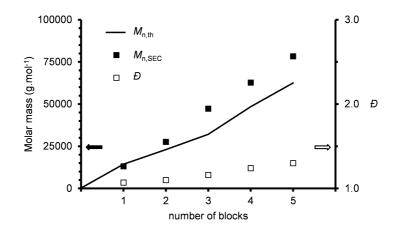
1.11 10⁻³

5.55 10-4

98.6

8.500

0.50

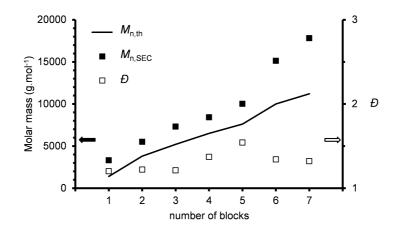

6.0

8.62 10-4

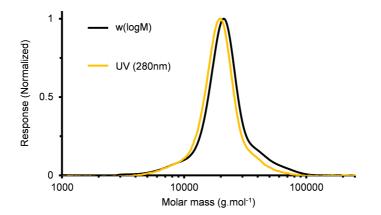
4.31 10-4

Overall $M_{\rm n,th}$ $M_{n,SEC}$ monomer Т Block Multiblock copolymer composition (g.mol⁻¹)^b (g.mol⁻¹)^c conversion (%)^a 1 PNAM₁₀₀ >99 14400 13100 1.07 2 PNAM100-*b*-PDMA100 >99 23000 27600 1.10 PNAM100-b-PDMA100-b-PNIPAM100 3 >99 32100 47300 1.16 PNAM100-b-PDMA100-b-PNIPAM100-b-PDEA100 62700 1.24 4 >99 48400 PNAM100-b-PDMA100-b-PNIPAM100-b-PDEA100-b-5 >99 62500 78300 1.30 PNAM₁₀₀ ^a Determined by ¹H NMR using eq. 1. ^b Determined using eq. 2.^c Determined using DMF-SEC

Table S16 - Monomer conversion and DMF-SEC analysis of the high DP acrylamido pentablockcopolymer prepared via RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator.


Figure S7 - Evolution of molar mass and dispersity values (determined by DMF-SEC) with each block extension for the high DP acrylamido pentablock copolymer prepared *via* RAFT in H_2O /dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Block	1	2	3	4	5	6	7
Monomer	HEA	PEGA	CEA	EGMEA	HEA	PEGA	EGMEA
DP _{targeted}	10	5	10	10	10	5	10
m _{monomer added} (mg)	303.3	626.9	376.5	339.9	303.3	626.9	339.9
m _{CTA added} (mg)	62.3	-	-	-	-	-	-
m _{TBHP added} (mg)	1.18	0.28	3.24	0.88	0.93	0.68	1.32
m _{AsAc added} (mg)	1.16	0.27	3.2	0.87	0.92	0.67	1.31
V _{H2O added} (mL)	0.399	0.078	0.561	0.534	0.571	0.296	0.534
V _{dioxane added} (mL)	0.171	-	-	-	-	-	-
% H₂O	70.0	73.6	85.8	90.2	92.6	93.4	94.6
V _{total} (mL) ^a	0.871	1.524	2.394	3.265	4.136	5.006	5.877
[Mon]₀ (mol.L⁻¹) ^b	3.00	0.86	1.09	0.80	0.63	0.26	0.44
[TBHP]₀ (mol.L ⁻¹) [¢] [AsAc]₀ (mol.L ⁻¹) [¢]	1.50 10 ⁻² 7.50 10 ⁻³	2.00 10 ⁻³ 1.00 10 ⁻³	1.50 10 ⁻² 7.50 10 ⁻³	3.00 10 ⁻³ 1.50 10 ⁻³	2.50 10 ⁻³ 1.25 10 ⁻³	1.50 10 ⁻³ 7.50 10 ⁻⁴	2.50 10 ⁻³ 1.25 10 ⁻³
[PABTC] ₀ /[TBHP] ₀ ^d	20.0	85.7	7.3	26.7	25.3	34.8	17.8


Table S17 - Conditions used in preparation of the low DP acrylate heptablock copolymer via RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator.

Block	Multiblock copolymer composition	Overall monomer conversion (%) ^a	<i>M</i> _{n,th} (g.mol⁻¹) ^b	<i>M</i> n,sec (g.mol⁻¹) ^c	Т
1	PHEA ₁₀	>99	1400	3300	1.19
2	PHEA ₁₀ - <i>b</i> -PPEGA ₅	>99	3800	5800	1.17
3	PHEA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PCEA ₁₀	>99	5200	7700	1.15
4	PHEA10-b-PPEGA5-b-PCEA10-b-PEGMEA10	>98	6500	10000	1.20
5	PHEA ₁₀ -b-PPEGA ₅ -b-PCEA ₁₀ -b-PEGMEA ₁₀ -b- PHEA ₁₀	>98	7600	13400	1.18
6	PHEA ₁₀ -b-PPEGA ₅ -b-PCEA ₁₀ -b-PEGMEA ₁₀ -b- PHEA ₁₀ -b-PPEGA ₅	>98	10000	16700	1.23
7	PHEA10-b-PPEGA5-b-PCEA10-b-PEGMEA10-b- PHEA10-b-PPEGA5-b-PEGMEA10	>98	11200	18400	1.28

Table S18 - Monomer conversion and DMF-SEC analysis of the low DP acrylate heptablockcopolymer prepared via RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator.

Figure S8 - Evolution of molar mass and dispersity values (determined by DMF-SEC) with each block extension for the low DP acrylate heptablock copolymer prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

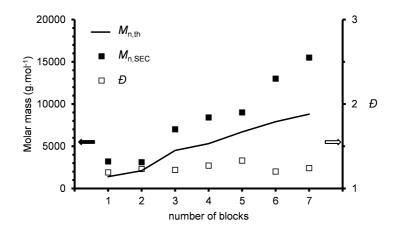

Figure S9 - DMF-SEC chromatogram of the low DP acrylate heptablock copolymer prepared *via* RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator, showing the (normalized) w(log M) and 280 nm UV detector responses.

Table S19 - Conditions used in preparation of the low DP acrylate octablock copolymer (blocks 1-4, 5b-8b) and the low DP acrylate/acrylamido heptablock copolymer (1-4, 5a-7a) *via* RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator. The polymerization mixture was split into two after the first 4 blocks and each half was block extended to prepare the two different multiblock copolymers.

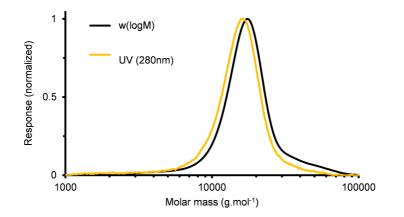
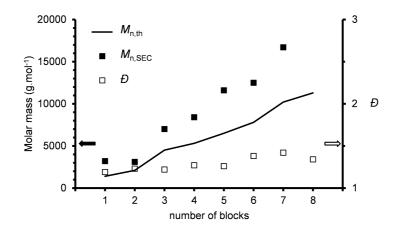
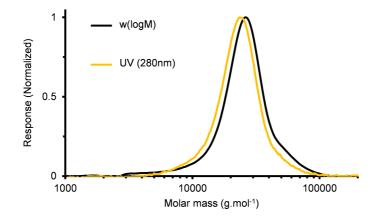

Block	1	2	3	4	5a	6a	7a	5b	6b	7b	8b
Monomer	HEA	AA	PEGA	MA	NAM	NIPAM	DMA	HEA	EGMEA	PEGA	HEA
DP _{targeted}	10	10	5	10	10	10	10	10	10	5	10
m _{monomer added} (mg)	303.3	188.2	626.9	224.9	184.4	147.8	129.5	151.7	170.0	313.4	151.7
m _{CTA added} (mg)	62.3	-	-	-	-	-	-	-	-	-	-
m _{TBHP added} (mg)	1.18	2.91	0.42	0.97	0.45	0.76	0.77	0.45	0.54	0.39	0.61
m _{AsAc added} (mg)	1.16	2.88	0.42	0.96	0.44	0.75	0.76	0.44	0.54	0.38	0.60
V _{H2O added} (mL)	0.399	0.567	0.150	0.511	0.271	0.435	0.301	0.285	0.267	0.148	0.372
V _{dioxane added} (mL)	0.171	-	-	-	-	-	-	-	-	-	-
% H₂O	70.0	85.0	86.7	90.5	92.7	94.7	95.5	92.8	94.1	94.7	95.7
V _{total} (mL) ^a	0.871	1.138	1.863	2.610	1.740	2.175	2.611	1.74	2.175	2.323	2.696
[Mon]₀ (mol.L⁻¹) ^ø	3.00	1.62	0.56	0.85	0.66	0.54	0.46	0.66	0.54	0.23	0.39
[TBHP]₀ (mol.L⁻¹) ^c	1.50 10 ⁻²	2.00 10 ⁻²	2.00 10 ⁻³	3.50 10 ⁻³	2.50 10 ⁻³	3.50 10 ⁻³	3.00 10 ⁻³	2.50 10 ⁻³	2.50 10 ⁻³	1.50 10 ⁻³	2.00 10 ⁻³
[AsAc]₀ (mol.L⁻¹) [¢]	7.50 10 ⁻³	1.00 10 ⁻²	1.00 10 ⁻³	1.75 10 ⁻³	1.25 10 ⁻³	1.75 10 ⁻³	1.50 10 ⁻³	1.25 10 ⁻³	1.25 10 ⁻³	7.5 10 ⁻⁴	1.00 10 ⁻³
[PABTC]₀/[TBHP]₀ ^d	20.0	8.1	55.8	24.2	26.4	15.5	15.3	26.4	21.6	30.5	19.4

Table S20 - Monomer conversion and DMF-SEC analysis of the low DP acrylate octablock copolymer (blocks 1-4, 5b-8b) and the low DP acrylate/acrylamido heptablock copolymer (1-4, 5a-7a) prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.


Block	Multiblock copolymer composition	Overall monomer conversion (%) ^a	<i>М</i> _{n,th} (g.mol ⁻¹) ^b	M _{n,SEC} (g.mol⁻¹) ^c	Ð ^c
1	PHEA ₁₀	>99	1400	3200	1.19
2	PHEA ₁₀ -b-PAA ₁₀	96	2100	3100	1.23
3	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅	>99	4500	7000	1.22
4	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀	>99	5300	8400	1.27
5a	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PNAM ₁₀	>99	6700	9000	1.33
6a	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PNAM ₁₀ - <i>b</i> -PNIPAM ₁₀	>99	7900	13000	1.20
7a	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PNAM ₁₀ - <i>b</i> -PNIPAM ₁₀ - <i>b</i> -PDMA ₁₀	>99	8800	15500	1.24
5b	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PHEA ₁₀	>99	6500	11600	1.26
6b	PHEA ₁₀ -b-PAA ₁₀ -b-PPEGA ₅ -b-PMA ₁₀ -b- PHEA ₁₀ -b-PEGMEA ₁₀	>99	7800	12500	1.38
7b	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PHEA ₁₀ - <i>b</i> -PEGMEA ₁₀ - <i>b</i> -PPEGA ₅	>99	10200	16700	1.42
8b	PHEA ₁₀ - <i>b</i> -PAA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PMA ₁₀ - <i>b</i> - PHEA ₁₀ - <i>b</i> -PEGMEA ₁₀ - <i>b</i> -PPEGA ₅ - <i>b</i> -PHEA ₁₀	>99	11300	20800	1.34


Figure S10 - Evolution of molar mass and dispersity values (determined by DMF-SEC) with each block extension for the low DP acrylate/acrylamido heptablock copolymer prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

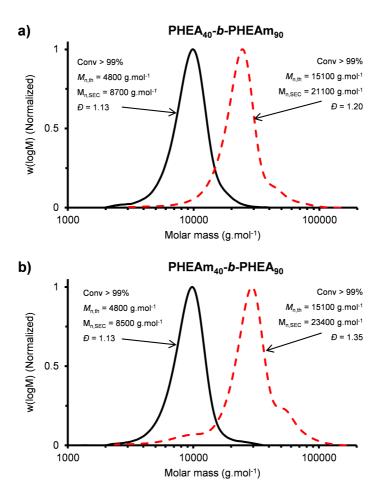

Figure S11 - DMF-SEC chromatogram of the low DP acrylate/acrylamido heptablock copolymer prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator, showing the (normalized) w(log M) and 280 nm UV detector responses.

Figure S12 - Evolution of molar mass and dispersity values (determined by DMF-SEC) with each block extension for the low DP acrylate octablock copolymer prepared *via* RAFT in H₂O/dioxane at 25 °C using TBHP/AsAc redox pair as initiator.

Figure S13 - DMF-SEC chromatogram of the low DP acrylate octablock copolymer prepared *via* RAFT in $H_2O/dioxane$ at 25 °C using TBHP/AsAc redox pair as initiator, showing the (normalized) w(log M) and 280 nm UV detector responses.

Figure S14 - DMF-SEC chromatograms for diblock copolymers a) $PHEA_{40}$ -*b*-PHEAm₉₀ and b) PHEAm₄₀-*b*-PHEA₉₀) prepared in one-pot *via* RAFT in H₂O/dioxane at 44 °C using VA-044 as thermal azoinitiator. Note the high molecular weight shoulders are due to diacrylate impurity in the HEA non-purified monomer (Figure S3)

Table S21- Summary of conditions and characterization of $PHEA_{40}$ -*b*-PHEAm₉₀ and $PHEAm_{40}$ -*b*-PHEA₉₀ diblocks prepared in one-pot *via* RAFT in H₂O/dioxane at 44 °C using VA-044 as initiator.

Diblock copolymer composition	[M]₀ (mol.L ⁻¹) ^a	[PABTC]₀ (mol.L ⁻¹)	[VA-044]₀ (mol.L ⁻¹) ^ø	[PABTC]₀/ [VA-044]₀	Monomer Conversion (%) ^c	<i>M</i> n,th (g.mol ⁻¹) ^d	<i>M</i> n,SEC (g.mol ⁻¹) ^e	Đ
PHEA ₄₀	4.0	0.10	10.0	10	>99	4800	8700	1.13
PHEA ₄₀ - <i>b</i> -PHEAm ₉₀	2.8	0.03	19.7	22	>99	15100	21200	1.20
PHEAm ₄₀	4.0	0.10	10.0	10	>99	4800	8500	1.13
PHEAm ₄₀ - <i>b</i> -PHEA ₉₀	2.8	0.03	19.7	22	>99	15100	23400	1.35

^a Represents the concentration of the monomer at the beginning of each block extension. ^b Takes into account the amount of initiator added and the amount od initiator remaining following the synthesis of the previous block. ^c Determined by ¹H NMR using eq. 1. ^d Determined using eq. 2.^e Determined using DMF-SEC.