ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Polymerization of Ethylene and Propylene Promoted by Group 4 Metal Complexes Bearing Thioetherphenolate Ligands

Ermanno Luciano,^{*a*} Francesco Della Monica,^{*a*} Antonio Buonerba,^{*a*} Alfonso Grassi,^{*a*} Carmine Capacchione^{*a*}* and Stefano Milione^{*a*}

^{*a*} Dipartimento di Chimica e Biologia and NANOMATES Research Centre for NANOMAterials and nanoTEchnology, Università degli Studi di Salerno, via Giovanni Paolo II 132 - 84084 Fisciano (SA).

* E-mail: ccapacchione@unisa.it.

Table of Contents

Figure S8. ¹H-¹H NOESY spectrum of complex (^{t-Bu}OS)₂ZrBn₂ (3) at room temperature.7 Figure S9b. VT- ¹H NMR spectra (CD₂Cl₂, 400 MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (**3**) in the region Figure S10. COSY spectrum (CD₂Cl₂, 600MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (3) showing the scalar Figure S11. ¹H-¹H NOESY spectrum (CD₂Cl₂, 600 MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (3) at -80 °C.10 Figure S12. ¹H-¹³C HSQC spectrum (CD₂Cl₂, 600 MHz) of complex (^{l-Bu}OS)₂ZrBn₂ (3) at -80 °C..11 Table S1. Internal and Free Energy differences (kcal/mol) of the minimum energy structures for the **Figure S15.** The opening $(\kappa^2 \rightarrow \kappa^1)$ of one of the OS ligands in the titanium and zirconium (OS)₂TiCl₂ and (OS)₂ZrMe₂ complexes. The stereoisomers C and A were considered as starting Figure S16. ¹³C NMR spectrum (TCDE, 110°C, 75 MHz) of polyethylene of run 1, Table 1...... 15 Figure S17. Aliphatic region of ¹³C NMR spectrum (TCDE, 110°C, 75 MHz) of polypropylene **Table S2.** ¹³C NMR chemical shift of polypropylene sample and the corresponding literature values Figure S19¹³C NMR spectra (TCDE, 110 °C, 75 MHz) of polypropylene samples of run 4 (a) and Figure S20. DSC thermograms for polypropylene samples of run 1 (a) and 4 (b) Table 2.....20 Figure S21. ¹H NMR spectrum (CDCl₃, 25 °C, 300 MHz) of oligomers obtained from the run 2 Figure S22. ¹H NMR spectrum (CDCl₃, 25 °C, 300 MHz) of oligomers obtained from the run 3 Figure S23. Aliphatic region of ¹³C NMR spectrum (CDCl₃, 25 °C, 75 MHz) of oligomers obtained Figure S24. Aliphatic region of ¹³C NMR spectrum (CDCl₃, 25 °C, 75.5 MHz) of oligomers Figure S25. ¹³C NMR spectra (CDCl₃, 25 °C, 75 MHz) of oligomers samples of run 5 (a) and 2 (b) Figure S26. GC trace of the oligomers sample from run 2 Table 2......24 Figure S27. Schulz-Flory distribution of oligomers sample of run 2 Table 2. (R = 0.969)......25 Figure S28. Schulz-Flory distribution of oligomers sample of run 3 Table 2. (R = 0.979)......25 References 26

Figure S2. ¹³C NMR spectrum (CD₂Cl₂, 25 °C, 100 MHz) of complex (^{t-Bu}OS)₂TiCl₂ (1).

Figure S3. Variable-temperature ¹H NMR spectra (CD_2Cl_2 , 600 MHz) of complex (^{*t*-Bu}OS)₂TiCl₂ (1). The signals marked with an asterisk are due to pentane impurity.

Figure S4. 'H NMR spectrum (CDCl₃, 25 °C, 400 MHz) of complex $(^{\text{cam}}OS)_2$ TiCl₂ toluene).

Figure S5. ¹³C NMR spectrum (CDCl₃, 25 °C, 75 MHz) of complex (^{Cum}OS)₂TiCl₂ (2).

Figure S7. ¹³C NMR spectrum (CD₂Cl₂, 25 °C, 100 MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (3).

Figure S8. ¹H-¹H NOESY spectrum ($\tau_m = 0.400 \text{ s}$, CD₂Cl₂, 600 MHz) of complex (^{*t*-Bu}OS)₂ZrBn₂ (**3**) at room temperature.

Figure S9a. Variable-temperature ¹H NMR spectra (CD₂Cl₂, 400 MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (**3**).

Figure S9b. Variable-temperature ¹H NMR spectra (CD_2Cl_2 , 400 MHz) of complex (^{*t*-Bu}OS)₂ZrBn₂ (3).in the region from 0.7 to 3.1 ppm.

Figure S10. COSY spectrum (CD₂Cl₂, 600MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (**3**) showing the scalar coupling of the Zr-CH₂-Ph resonances at -80 °C.

Figure S11. ¹H-¹H NOESY spectrum ($\tau_m = 0.400 \text{ s}$, CD₂Cl₂, 600 MHz) of complex (^{*t*-Bu}OS)₂ZrBn₂ (**3**) at -80 °C.

Figure S12. ¹H-¹³C HSQC spectrum (CD₂Cl₂, 600 MHz) of complex (^{t-Bu}OS)₂ZrBn₂ (**3**) at -80 °C.

Figure S13. ¹H NMR spectrum (CD₂Cl₂, 25 °C, 400 MHz) of complex (^{Cum}OS)₂ZrBn₂ (4).

Figure S14. ¹³C NMR spectrum (CD₂Cl₂, 25 °C, 75 MHz) of complex (^{Cum}OS)₂ZrBn₂ (4).

	Diasteroisomer Symmetry	$ \begin{array}{c} $	$ \begin{array}{c c} S \\ O_{1,1} \\ O \\ S \\ B \\ C_2 \end{array} \times X $	$ \begin{array}{c c} S \\ O, & X \\ O, & X \\ M \\ S \\ O \\ C \\ C$	$ \begin{array}{c c} $	$ \begin{array}{c} $
Titanium	Minimum Energy structure	A.A.	A A		the second second	North Contraction
	Imag. freq. ^{<i>a</i>} ΔE ΔE_{ZPE}^{b} ΔG^{c}	0 0.0 0.0 0.0	0 3.9 3.5 8.3	0 -1.7 -1.8 3.9	0 0.4 0.3 4.8	2 15.5 -
Zirconium	Minimum Energy structure	-XA-YA	A A A	A A A	-	A June
	Imag. freq. ^{<i>a</i>} ΔE ΔE_{ZPE}^{b} ΔG^{c}	0 0.0 0.0 0.0	0 3.8 4.5 6.2	0 2.0 2.3 3.0	0 2.7 3.0 4.5	3 37.6

Table S1. Internal and Free Energy differences (kcal/mol) of the minimum energy structures for the five diastereoisomers of the $(OS)_2MX_2$ complexes (M = Ti, X = Cl; M = Zr, X = Me).

^{*a*} Number of imaginary frequencies ^{*b*} Zero Point Energy (ZPE) Corrected Energies (at 0 K); ^{*c*} Free Energies in gas phase thermodynamically corrected to 298 K.

Figure S15. The opening $(\kappa^2 \rightarrow \kappa^1)$ of one of the OS ligands in the titanium and zirconium $(OS)_2 TiCl_2$ and $(OS)_2 ZrMe_2$ complexes. The stereoisomers C and A were considered as starting species for the titanium and zirconium complexes, respectively.

Figure S16. ¹³C NMR spectrum (TCDE, 110°C, 75 MHz) of polyethylene of run 1, Table 1.

Figure S17. Aliphatic region of ¹³C NMR spectrum (TCDE, 110°C, 75 MHz) of polypropylene sample of run 1 in Table 2.

Line	Chemical shift (ppm from TMS)		H-T	H-H	T-T	1-r
	exp	Literature ¹				
a	45.7-47.6	45.7-47.7	$S_{\gamma\alpha\alpha\gamma}(1)$			
		45.7-46.5			$S_{\gamma\alpha\alpha\delta}(7)$	
b	42.9-44.2	43.3-44.1		r_0 -S _{baay} (4)		$r_0 - S_{\beta \alpha \alpha \gamma} (19)$
		40.9-42.3		m_0 - $S_{\beta\alpha\alpha\gamma}(4)$		
		36.8-39.1				r ₀ -Τ _{δγαγ} (15)
		36.5				$r_1 - S_{\gamma\alpha\beta\gamma}$ (13)
с	35.6	35.4-35.6		m_0 - $T_{\alpha\beta}$ (5)	$r_1-S_{\gamma\alpha\beta\delta}$ (10)	m_1 - $S_{\gamma\alpha\beta\gamma}$ (13)
d	34.1-34.8	34.2-34.8		$r_0-T_{\alpha\beta}$ (5)	m_1 - $S_{\gamma\alpha\beta\delta}$ (10)	$r_0-T_{\delta\alpha\beta\delta}$ (17)
e	32.6	32.6		• • •		$r_0-S_{\delta\beta\alpha\beta}$ (14)
f	31.1	31.1-31.3			$T_{\delta\beta\gamma\delta+}$ (8)	$T_{\delta\beta\gamma\delta}(11)$
g	28.4	28.3-28.4	Τ _{ββ} (2)			
		20.1-21.7	$P_{\beta\beta}(3)$			
h	20.1-21.8	20.1-20.9			$m_1 - P_{\beta\gamma}(9)$	m ₁ -P _{δβγδ} (12)
					r_1 - $P_{\beta\gamma}(9)$	r_{1} - $P_{\delta\beta\gamma\delta}$ (12)
i	16.8-17.2	16.6-17.2		m_0 - $P_{\alpha\beta}$ (6)		
1	15.5-17.5					
	14.7-15.2	14.7-15.1		$r_0-P_{\alpha\beta}$ (6)		$r_0 - P_{\delta \gamma \alpha \gamma} (16)$
m						r_0 - $P_{\delta\alpha\beta\delta}$ (18)

Table S2. ¹³C NMR chemical shift of polypropylene sample and the corresponding literature values for regioirregular polypropylene.¹

The table contains the chemical shifts of peaks observed in the ¹³C spectrum of PP obtained from run 1 Table2. The observed chemical shifts are listed in the column **exp**, and compared to those reported in literature and listed in the column **Literature**. The letters in column **Line** refer to Figure S17 and the numbers reported in brackets refer to the Figure S18.

Figure S18. Possible modes of 2,1 insertion during the propylene polymerization.

C

Figure S19 ¹³C NMR spectra (TCDE, 110 °C, 75 MHz) of polypropylene samples of run 4 (a) and 1 (b) Table 2.

Figure S20. DSC thermograms for polypropylene samples of run 1 (a) and 3 (b) Table 2. Heating rate $=10^{\circ}$ C min⁻¹

Figure S21. ¹H NMR spectrum (CDCl₃, 25 °C, 300 MHz) of oligomers obtained from the run 2 Table 2.

Figure S22. ¹H NMR spectrum (CDCl₃, 25 °C, 300 MHz) of oligomers obtained from the run 3 Table 2.

Figure S23. Aliphatic region of ¹³C NMR spectrum (CDCl₃, 25 °C, 75 MHz) of oligomers obtained from the run 2 Table 2.

Figure S24. Aliphatic region of ¹³C NMR spectrum (CDCl₃, 25 °C, 75.5 MHz) of oligomers obtained from the run 3 Table 2.

Figure S25. ¹³C NMR spectra (CDCl₃, 25 °C, 75 MHz) of oligomers samples of run 5 (a) and 2 (b) Table 2.

Figure S26. GC trace of the oligomers sample from run 2 Table 2.

Figure S27. Schulz-Flory distribution of oligomers sample of run 2 Table 2. (R = 0.969).

Figure S28. Schulz-Flory distribution of oligomers sample of run 3 Table 2. (R = 0.979).

References

- 1) T. Asakura, N. Nakayama, M. Demura, A. Asano, *Macromolecules* 1992, 25, 4876-4881.
- 2) L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100, 1253-1345.