Electronic Supplementary Information:

Sequence-Controlled Degradable Polymers by Controlled Cationic Copolymerization of Vinyl Ethers and Aldehydes: Precise Placement of Cleavable Units at Predetermined Positions

Marie Kawamura, Arihiro Kanazawa, Shokyoku Kanaoka, and Sadahito Aoshima* Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Contents:

Figure S1. Copolymer composition curves and Fineman-Ross plot for the polymerization of CEVE and *p*MeBzA

Figure S2. MWD curves of products obtained by the addition of a small amount of myrtenal or pMeBzA during the living cationic polymerization of IBVE or CEVE

Figure S3. Time-conversion curves, and M_n and M_w/M_n values of products obtained by the multiple addition of small amounts of *p*MeBzA during the living cationic polymerization of CEVE

Figure S4. Time-conversion curves, M_n and M_w/M_n values, and MWD curves of a product obtained by the addition of a large amount of *p*MeBzA during the living cationic polymerization of CEVE and its acid-hydrolysis product

Figure S5. GPC fractionation analyses and ¹H NMR spectra of acid-hydrolysis product of poly[IBVE-*b*-(IBVE-*alt*-myrtenal)]

Figure S1. (A) Copolymer composition curves of CEVE with *p*MeBzA and (B) the Fineman-Ross plot for the copolymerization of CEVE with *p*MeBzA. The broken curve shown in Figure S1A was drawn using the r_{CEVE} (0.03) and r_{pMeBzA} (0) values. The dashed-dotted line is an azeotropic line. Polymerization conditions: [monomer]_{total, 0} = 1.2 M, [EtSO₃H]₀ = 8.0 mM, [GaCl₃]₀ = 4.0 mM, [1,4-dioxane] = 0.50 M, in toluene at -78 °C.

Figure S2. MWD curves of products obtained by the addition of a small amount of aldehyde during the living cationic polymerization of VE (middle) and its acid-hydrolysis product (lower). (A) A combination of IBVE and *p*MeBzA, (B) a combination of IBVE and myrtenal, and (C) a combination of CEVE and myrtenal. Polymerization: $[VE]_0 = 0.40$ (for B) or 1.2 (for A and C) M, $[aldehyde]_{added} = 40$ mM (five equivalent toward propagating chain), $[EtSO_3H]_0 = 8.0$ mM, $[GaCl_3]_0 = 4.0$ mM, [1,4-dioxane] = 0.50 (for A and C) or 1.0 (for B) M, in toluene at -78 °C; hydrolysis conditions: 0.50 M aqueous HCl-1,2-dimethoxyethane at room temperature for 2 h, 0.33 wt%.

Figure S3. (A) Time-conversion curves and (B) M_n and M_w/M_n values of products obtained by the multiple addition of small amounts of *p*MeBzA during the living cationic polymerization of CEVE. Polymerization conditions: [CEVE]₀ = 1.2 M, [*p*MeBzA]_{added} = 40 mM (five equivalent toward propagating chain), [EtSO₃H]₀ = 8.0 mM, [GaCl₃]₀ = 4.0 mM, [1,4-dioxane] = 0.50 M, in toluene at -78 °C.

Figure S4. (A) Time-conversion curves, (B) M_n and M_w/M_n values, and (C) MWD curves of a product obtained by the addition of a large amount of *p*MeBzA during the living cationic polymerization of CEVE and its acid-hydrolysis product. Polymerization conditions: [CEVE]₀ = 1.2 M, [*p*MeBzA]_{added} = 0.78 M, [EtSO₃H]₀ = 8.0 mM, [GaCl₃]₀ = 4.0 mM, [1,4-dioxane] = 1.0 M, in toluene at -78 °C; hydrolysis conditions: 0.50 M aqueous HCl-1,2-dimethoxyethane at room temperature for 2 h, 0.33 wt%.

Figure S5. GPC fractionation analyses of poly[IBVE-*b*-(IBVE-*alt*-myrtenal)]: MWD curves before and after fractionation and ¹H NMR spectra of each fraction. See also Figure 4.