Supporting Information

Aromatic amine-sulfone/sulfoxide conjugated D $-\pi$ -A- π -D type dyes in photopolymerization under 405nm and 455nm laser beams

Mengqiang Wang,^{*a,b*} Xiaoyu Ma, ^{*b*} Jinghua Yu,^{*b*} Xiaoqin Jia, ^{*b*} Dandan Han, ^{*b*} Tengfei Zhou, ^{*b*} Jinliang Yang,^{*b*} Jun Nie^{*b*} and Tao Wang^{**a,b*}

^aState Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, China ^bDepartment of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China

*corresponding E-mail wangtwj2000@163.com

Scheme. S1. Synthesis scheme of ethynyl aromatic amine.

Scheme.S2 Synthesis scheme of TA-SO and TA-SO2..

Fig. S1 UV-vis absorption spectra of PTZ, TA-Br and Cz in DCM (M=1×10⁻⁵mol/L).

Fig. S2 UV-vis absorption spectra of PTZ, TA-Br and Cz in DCM (M=1×10-3mol/L).

Fig.S3 Two-photon excited fluorescence spectra of Cz-SO, Cz-SO2, TA-SO, TA-SO2, TA-SO2, PTZ-SO and PTZ-SO2 in DCM under different excited laser wavelengths and laser intensity of 8.2 GW/cm^2 . (M_{AAS} =1×10⁻⁴ mol/L)

Wavelengt	Cz-SO	Cz-SO2	TA-SO	TA-SO2	PTZ-SO	PTZ-SO2
h	σ(GM)	σ(GM)	σ(GM)	σ(GM)	σ(GM)	σ(GM)
(nm)						
700			465.6		315.4	
710			408.9		302.9	
720	196.0	176.4	362.8	548.1	249.5	1060.1
730	220.2	90.6	448.9	606.6	319.4	1183.9
740	138.0	221.8	467.0	510.0	336.3	1061.9
750	72.7	95.2	442.2	777.0	251.6	1053.6
760	125.8	42.7	333.7	750.1	201.7	1207.3
770	5.5	78.2	327.8	423.9	269.0	699.0
780		67.3	254.4	751.4	212.3	1254.9
790		18.2	163.5	664.3	167.5	1360.5
800		31.0	129.4	327.3	197.8	1774.7
810		10.6	120.3	1006.8	333.5	2465.5
820			69.7	770.7	278.6	2218.8
830			24.5	362.9	147.0	1318.0
840			17.8	233.2	92.2	993.9
850				166.1		991.9
860				77.8		610.6
870				47.2		505.6

Table S1Two-photon absorption data of Cz-SO, Cz-SO2, TA-SO, TA-SO2, TA-SO2, PTZ-SOand PTZ-SO2 under different excited laser wavelength.

Fig. S4 Optimized geometry, highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) of CZ-SO2, TA-SO2 and PTZ-SO2 at the B3LYP/6-31G* level.

Fig. S5 Cyclic voltammogram curves of Cz2-SO, TA-SO2 and PTZ-SO2 in DCM

Fig. S6 Cyclic voltammogram curves of ONI in DCM.