Supporting information

Amphiphilic glycosylated block copolypeptides as macromolecular surfactants in the emulsion polymerization of styrene

Jaco Jacobs^a, Nicholas Gathergood^a, Johan P.A. Heuts^b and Andreas Heise^{a,b}

^aDublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland. ^bEindhoven University of Technology, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Figure S1: SEC traces of PZLL₅₉ (black) and PZLL₅₉-*b*-PPA₂₄ (1, red).

Figure S2: ¹H-NMR spectra (D₂O, 400 MHz) of LA₁₇-*r*-PLL₄₂-*b*-PPA₂₄.

Figure S3: ¹H-NMR spectra (D₂O, 400 MHz) of GA₂₈-*r*-PLGA₃₂-*b*-PPA₂₀.

Figure S4: ¹H-NMR spectra (TFA-d, 400 MHz) of PGL_7 -*b*-PBLG₅₆-*b*-PPA₁₉ (**3**, top) and $GalAc_7$ -*b*-PBLG₅₆-*b*-PPA₁₉ (**5**, bottom). The * signals are due to DMF.

Figure S5: CD spectra of aqueous solutions of GA_{28} -*r*-PLGA₃₂-*b*-PPA₂₀ as a function of pH.

Figure S6: CD spectra of aqueous solutions of PGL₇-*b*-PBLG₅₆-*b*-PPA₁₉ as a function of pH.

Figure S7: CD spectra of aqueous solutions of Gal₇-*b*-PBLG₅₆-*b*-PPA₁₉ as a function of pH.

Figure S8: CD spectra of aqueous solutions of PLL_{59} -*b*-PPA₂₄ as a function of pH.

Figure S9: CD spectra of aqueous solutions of LA_{17} -r-PLL₄₂-*b*-PPA₂₄ as a function of pH.

Figure S10: Estimated helicities determined for the native copolypeptide, $PArg_7-b-PBLG_{56}-b-PPA_{19}(\bullet)$ and its glycosylated counterpart, $Gal_7-b-PBLG_{56}-b-PPA_{19}(\bullet)$ as a function of pH.

Figure S11: Evolution of monomer conversion with time for the emulsion polymerization of styrene using KPS as initiator (1 wt%), a monomer content of 12 wt% and surfactant content of 5 wt% (\bullet), a monomer content of 15 wt% and surfactant content of 5 wt% (\bullet), a monomer content of 15 wt% and surfactant content of 2 wt% (\blacktriangle) with GA₇-*b*-PLGA₅₆-*b*-PPA₁₉ as stabilizer.

Figure S12: Evolution of monomer conversion with time for the emulsion polymerization of styrene using KPS as initiator (1 wt%), a monomer content of 12 wt% and surfactant content of 5 wt% (\blacksquare), a monomer content of 15 wt% and surfactant content of 5 wt% (\bullet), a monomer content of 15 wt% and surfactant content of 2 wt% (\blacktriangle) with LA₁₇-*r*-PLL₄₂-*b*-PPA₂₄ as stabilizer.

Figure S13: Turbidity measurements of the amphiphillic copolypeptides GA_{28} -*r*-PLGA₃₂-*b*-PPA₂₀ (**•**), LA₁₇-*r*-PLL₄₂-*b*-PPA₂₄ (**•**) and Gal₇-*b*-PLGA₅₆-*b*-PPA₁₉ (**•**) in the presence of lectin RCA₁₂₀. The spectra show qualitative UV absorbance at 350 nm indicating lectin binding of the galactose moieties.