Electronic Supplementary Information

Highly efficient photovoltaics and field-effect transistors based on copolymers of monofluorinated benzothiadiazole and quarterthiophene: synthesis and effect of the molecular weight on device performance

Minghui Hao,^a Xiaodong Li,^b Keli Shi,^c Dongjun Xie,^a Xuan Zeng,^a Junfeng Fang,^{*b} Gui Yu^{*c} and Chuluo Yang^{*a}

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^cBeijing National laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

polymer	annealing temperature (°C)	$\mu_{\rm h} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$
H-P4TFBT	25	0.14
	80	0.32
	120	0.31
	160	0.39
	200	0.36
	240	0.37
	280	0.04

 Table S1: Optimized Electrical Parameters of Field-effect Transistors at Different

Annealing Temperatures.

Fig. S1 Evolution of field-effect hole mobilities for H-P4TFBT with different channel length (L) and different annealing temperatures (T).

Fig. S2 AFM topographical height images (3 μ m × 3 μ m) of H-P4TFBT on OTSmodified SiO₂/Si substrates. (a) without annealing and (b) with annealing at 160 °C.

Fig. S3 Current voltage characteristics of **P4TFBT** blends with PC₇₁BM in SCLC devices, and the lines are fitted according to the SCLC model.

Fig. S4 ¹H NMR of 4,4'-bis(2-octyldodecyl)-2,2'-bithiophene.

Fig. S5 ¹H NMR of 4,4'-bis(2-octyldodecyl)-2,2'-bithiophene and a drop of D_2O .

Fig. S6 ¹³C NMR of 4,4'-bis(2-octyldodecyl)-2,2'-bithiophene.

Fig. S7 ¹H NMR of 5,5'-dibromo-4,4'-bis(2-octyldodecyl)-2,2'-bithiophene.

Fig. S8 ¹³C NMR of 5,5'-dibromo-4,4'-bis(2-octyldodecyl)-2,2'-bithiophene.

Waters 2690D Separations Module Waters 2410 Refractive Index Detector Solvent: thf Flow Rate :0.3 ml.min-1 Standards : Polystyrene Standard Temperature : Column: 313K Detector: 308K

Fig. S9 Molecular weight distribution of L-P4TFBT measured at room temperature

in tetrahydrofuran against PS standards.

Fig. S10 Molecular weight distribution of H-P4TFBT measured at 150 °C in TCB against PS standards.