Supporting Information

for

RAFT dispersion polymerization: A method to tune the morphologies of thymine-containing self-assembly

Yan Kang,^a Anaïs Pitto-Barry,^a Anna Maitland,^a and Rachel K. O'Reilly*^a

1. Characterization data for all polymers

2. Analysis of polymers 1-3

Figure S1. SEC analysis and ¹ H NMR spectrum of 1	5
Figure S2. SEC analysis of PMMA macro-CTAs, 2 and 3	5

3. Analysis of the assembly formed during polymerization in chloroform, 4-100

Figure S3. SEC analysis, DLS analysis and Zimm plots of 4-100 prepared in chloroform	6
Figure S4. SANS analysis of 4-100 prepared in deuterated chloroform	7

4. Analysis of the assembly formed during polymerization in chloroform and 1,4dioxane mixtures, 4-75 to 4-12.5

Figure S5. SEC and DLS of the self-assembly of 4-75 prepared in a mixture of chloroform and 1,4-dioxane	.8
Figure S6. AFM height image and corresponding height profile of the assemblies, 4-75	.8
Figure S7. SEC and DLS of the self-assembly of 4-50 prepared in a mixture of chloroform and 1,4-dioxane	.9
Figure S8. SEC and DLS of the self-assembly of 4-33 prepared in a mixture of chloroform and 1,4- dioxane	.9
Figure S9. SEC and DLS of the self-assembly of 4-25 prepared in a mixture of chloroform and 1,4- dioxane	10
Figure S10. SEC and DLS of the self-assembly of 4-12.5 prepared in a mixture of chloroform and 1, dioxane	4- 10

5. Analysis of the assembly formed during polymerization in 1,4-dioxane, 4-0

Figure S11. SEC and DLS of the self-assembly of 4-0 prepared in 1,4-dioxane	.11
Figure S12. AFM height image and corresponding height profile of the assemblies, 4-0	.11
Figure S13. SAXS analysis of 4-0 prepared in 1,4-dioxane	.12

6. SEC analysis of the polymers formed from macro-CTA 1 in a mixture of chloroform and 1,4-dioxane

7. Investigation into the stability of TMA in the presence of the CTA and heating

Figure S15. ¹H NMR spectra of a mixture of TMA and CTA before and after heating for 24 hours .. 14

8. Analysis of the polymers formed from macro-CTA 1 in chloroform

Figure S16. SEC analysis, DLS analysis and Zimm plots of 5 prepared in chloroform	15
Figure S17. SEC and DLS of the self-assembly of 6a prepared in chloroform.	16
Figure S18. SANS analysis of 6a prepared in chloroform	.16

9. Analysis of the polymers formed from macro-CTA 1 in 1,4-dioxane

Figure S19. TEM images of the self-assemblies prepared by RAFT dispersion polymerization in 1,4	l-
dioxane, DLS particle size distributions and SEC traces	17
Figure S20. AFM height image and corresponding height profile of the assemblies formed from 7	18
Figure S21. AFM height image and corresponding height profile of the assemblies formed from 8	18
Figure S22. SEC and DLS distribution of the self-assembly of 6b prepared in 1,4-dioxane	18
Figure S23. SEC and DLS distribution of the self-assembly of 7 prepared in 1,4-dioxane	19
Figure S24. SEC and DLS distribution of the self-assembly of 8 prepared in 1,4-dioxane	19

10. Analysis of the polymers formed in the presence of an adenine mediator

Scheme S1 Synthetic scheme for the preparation of the adenine-containing mediator	20
Figure S25. ¹ H NMR and ¹³ C NMR spectra of adenine-containing mediator	20
Figure S26. SEC and DLS of the self-assembly of 5 ' prepared in the presence of adenine mediat chloroform	tor in 20
Figure S27. SEC and DLS of the self-assembly of 6a' prepared in the presence of adenine medichloroform	iator in 21

Figure S28. SEC and DLS of the self-assembly of 4-100' prepared in the presence of adenine	
mediator in chloroform	.21

11. Analysis of the polymers formed from macro-CTA, 3

Figure S29.	SEC and DLS	distribution of the	self-assembly of	f 9a in chloroform	
Figure S30.	SEC and DLS	distribution of the	self-assembly of	f 9b in 1,4-dioxan	e22

1. Characterization data for all polymers

Polymers	Solvent/mediator	Polyn	Conv.	$M_{ m n, th}$	$M_{\rm n, NMR}$	$M_{\rm n, SEC}$	D_{M}
		time (hr)	(%)	(kDa)	(kDa)	(kDa) ^a	
PTMA ₄₀ , 1	1,4-dioxane	24	61	7.5	11.7	12.3	1.14
PMMA ₇₀ , 2	toluene	5	36	4.5	6.8	7.0	1.17
PMMA ₂₂₀ , 3	toluene	9	57	22.6	22.0	21.5	1.19
PMMA ₇₀ - <i>b</i> -	chloroform	24	97	36.1	45.1	42.8	2.88
PTMA ₁₀₀ , 4-100							
PMMA ₇₀ - <i>b</i> -	chloroform:1,4-	24	94	35.2		38.0	1.96
PTMA ₁₀₀ , 4-75	dioxane = $75:25$						
PMMA ₇₀ - <i>b</i> -	chloroform: 1,4-	24	92	34.6		37.9	2.72
PTMA ₁₀₀ , 4-50	dioxane = 50:50						
PMMA ₇₀ - <i>b</i> -	chloroform: 1,4-	24	93	34.9		35.0	2.84
PTMA ₁₀₀ , 4-33	dioxane = $33:67$						
PMMA ₇₀ - <i>b</i> -	chloroform: 1,4-	24	91	34.3		35.5	2.29
PTMA ₁₀₀ , 4-25	dioxane = $25:75$						
PMMA ₇₀ - <i>b</i> -	chloroform: 1,4-	24	90	34.0		34.0	1.96
PTMA ₁₀₀ , 4-12.5	dioxane = 12.5:87.5		~ -				
PMMA ₇₀ - <i>b</i> -	1,4-dioxane	24	87	33.1		30.0	1.44
PTMA ₁₀₀ , 4-0							
PMMA ₇₀ - <i>b</i> -	chloroform	24	95	12.7	12.0	12.2	1.67
PTMA ₂₀ , 5							
PMMA ₇₀ -b-	chloroform	24	92	20.8	26.2	34.7	2.01
PTMA ₅₀ , 6a							
PMMA ₇₀ - <i>b</i> -	1,4-dioxane	24	80	18.5	19.0	16.4	1.24
PTMA ₅₀ , 6b							
PMMA ₇₀ - <i>b</i> -	1,4-dioxane	24	95	49.8		40.1	1.84
PTMA ₁₅₀ , 7				<i>c1</i> 0		40.7	
PMMA ₇₀ -b-	1,4-dioxane	24	90	61.0		49.5	2.21
$PTMA_{200}, 8$							
PMMA ₇₀ - <i>b</i> -	chloroform +	24	66	9.6		10.2	1.27
PTMA ₂₀ , 5'	adenine -mediator		~ -	.			
PMMA ₇₀ - <i>b</i> -	chloroform +	24	87	20.1		22.2	2.19
PTMA ₅₀ , 6a'	adenine-mediator						
PMMA ₇₀ - <i>b</i> -	chloroform +	24	95	35.5		33.5	3.10
PTMA ₁₀₀ , 4-100 ⁷	adenine-mediator						
PMMA ₂₂₀ - <i>b</i> -	chloroform	24	91	35.5	34.4	34.3	1.72
PTMA ₅₀ , 9a		10	0.7			20.4	
PMMA ₂₂₀ - <i>b</i> -	1,4-dioxane	48	85	34.1	35.7	30.1	1.17
PTMA ₅₀ , 9b		24	61				

Table S1. Summary of characterization data of all polymers

^a DMF eluent, PMMA as standards

2. Analysis of polymers 1-3

Figure S1. SEC analysis and ¹H NMR spectrum of homopolymer PTMA, **1** polymerized in 1,4-dioxane (DMF eluent, with PMMA standards).

Figure S2. SEC analysis of PMMA macro-CTAs, 2 and 3 (DMF eluent, with PMMA standards).

3. Analysis of the assembly formed during polymerization in chloroform, 4-100

Figure S3. SEC analysis of **4-100** (DMF eluent, with PMMA standards), DLS distribution and Zimm plots (determined by SLS analysis) for the self-assemblies prepared during the polymerization, to afford PMMA₇₀-*b*-PTMA₁₀₀ in chloroform (**4-100**).

Data from Guinier-Porod fit:

Sample	$R_{\rm g}$ (nm)	S
4-100	25.6	0.70

s = 0: spheres; s = 1: rods; s = 2: platelets

Data from polycoreshell ratio model:

Core radius (nm)	Shell thickness (nm)	Total radius (nm)
70.0	38.3	108.3

The SLDs of the solvent and the core were fixed while the other parameters were left to float. Fittings with various manually inputted starting parameters were used to assess the validity of the fit.

Figure S4. SANS analysis of **4-100**, PMMA₇₀-*b*-PTMA₁₀₀ in deuterated chloroform: Experimental profile and Guinier-Porod fit (top left); plot to determine the thickness of the membrane (top right); experimental profile and polycoreshell ratio fit (bottom). 4. Analysis of the assembly formed during polymerization in chloroform and 1,4dioxane mixtures, 4-75 to 4-12.5

Figure S5. SEC analysis of **4-75** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-75**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (v/v = 75:25).

Figure S6. AFM height image of the self-assembly prepared in the polymerization **4-75**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (75:25, v/v) and the corresponding height profile.

Figure S7. SEC analysis of **4-50** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-50**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (v/v = 50.50).

Figure S8. SEC analysis of **4-33** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-33**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (v/v = 33:67).

Figure S9. SEC analysis of **4-25** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-25**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (v/v = 25:75).

Figure S10. SEC analysis of **4-12.5** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-12.5**, PMMA₇₀-*b*-PTMA₁₀₀ in a mixture of chloroform and 1,4-dioxane (v/v = 12.5:87.5).

5. Analysis of the assembly formed during polymerization in 1,4-dioxane, 4-0

Figure S11. SEC analysis of **4-0** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-0**, PMMA₇₀-*b*-PTMA₁₀₀ in 1,4-dioxane.

Figure S12. AFM height image of the self-assembly prepared in the polymerization **4-0**, PMMA₇₀-*b*-PTMA₁₀₀ in 1,4-dioxane and the corresponding height profile.

Figure S13. SAXS analysis of **4-0**, PMMA₇₀-*b*-PTMA₁₀₀ in 1,4-dioxane. Kratky plots for spheres and cylinders (left); experimental profile and fits with different models: disperse spheres (PCR), convex lens (CL), disperse cylinder (CYPR), and core-shell cylinder (CSCYPR) (right).

6. SEC analysis of the polymers formed in the polymerization of PTMA from macro-CTA 1 in a mixture of chloroform and 1,4-dioxane

Figure S14. Normalized SEC traces of **2** and **4-X**, were **X** represents the volume ratio of chloroform in the polymerization solvent (DMF eluent, with PMMA standards).

7. Investigation into the stability of TMA in the presence of the CTA and heating

Figure S15. ¹H NMR spectra of a mixture of TMA and CTA (CPDT) in chloroform before and after heating for 24 hours.

Figure S16. SEC analysis of **5** (DMF eluent, with PMMA standards), DLS distribution and Zimm plots (determined by SLS analysis) for the self-assemblies prepared during the polymerization, to afford PMMA₇₀-*b*-PTMA₂₀ in chloroform.

Figure S17. SEC analysis of **6a** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **6a**, PMMA₇₀-*b*-PTMA₅₀ in chloroform.

Data obtained from Guinier-Porod fit:

Sample	$R_{\rm g}({\rm nm})$	S		Guinier fit $(R_g, nm)^*$		
6a	62.2	1.32	(high errors)	29.5		
S = 0; spheres; $s = 1$; rods; $s = 2$; plotalate						

S = 0: spheres; s = 1: rods; s = 2: platelets

*The difference between the values of R_g is explained by the presence of elongated morphologies in solution. We suggest that the Guinier fit likely represents the cross-section of the elongated morphologies in solution and does not take into account their length. The R_g value given by the Guinier-Porod fit takes into account the length and cross-section of the extended morphologies, which explains the higher value obtained.

Data from sum of sphere model and cylinder model:

Cyl radius (nm)	Cyl length (nm)	Sphere radius (nm)
21.2	2484	32.3

Figure S18. SANS analysis of polymer **6a**, PMMA₇₀-*b*-PTMA₅₀ in chloroform. Experimental profile and Guinier-Porod fit (left); experimental profile and fits with sphere, cylinder and sum models (right).

Figure S19. Characterization of the self-assemblies prepared by RAFT dispersion polymerization in 1,4-dioxane for a target copolymer PMMA₇₀-*b*-PTMA_n, their corresponding structures (a), representative TEM images (b - d), DLS particle size distributions (e) and SEC traces (f) with increasing TMA block length (DMF as eluent, PMMA standards). Scale bar: 100 nm.

Figure S20. AFM height image of the self-assembly prepared in the polymerization **7**, PMMA₇₀-*b*-PTMA₁₅₀ in 1,4-dioxane and the corresponding height profile.

Figure S21. AFM height image of the self-assembly prepared in the polymerization **8**, PMMA₇₀-*b*-PTMA₂₀₀ in 1,4-dioxane and the corresponding height profile.

Figure S22. SEC analysis of **6b** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **6b**, PMMA₇₀-*b*-PTMA₅₀ in 1,4-dioxane.

Figure S23. SEC analysis of **7** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **7**, PMMA₇₀-*b*-PTMA₁₅₀ in 1,4-dioxane.

Figure S24. SEC analysis of **8** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **8**, PMMA₇₀-*b*-PTMA₂₀₀ in 1,4-dioxane.

10. Analysis of the polymers formed in the presence of an adenine mediator

Scheme S1. Synthetic route for the preparation of the adenine-containing mediator.

Figure S25. ¹H NMR (in CDCl₃) and ¹³C NMR (in DMSO-*d*₆) spectra of adenine-containing mediator.

Figure S26. SEC traces of **5'** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **5'**, PMMA₇₀-*b*-PTMA₂₀ in the presence of adenine mediator in chloroform.

Figure S27. SEC traces of **6a**' (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **6a**', PMMA₇₀-*b*-PTMA₅₀ in the presence of adenine mediator in chloroform.

Figure S28. SEC analysis of **4-100'** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **4-100'**, PMMA₇₀-*b*-PTMA₁₀₀ in the presence of adenine mediator in chloroform.

11. Analysis of the polymers formed from macro-CTA, 3

Figure S29. SEC analysis of **9a** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **9a**, PMMA₂₂₀-*b*-PTMA₅₀ in chloroform.

Figure S30. SEC analysis of **9b** (DMF eluent, with PMMA standards) and DLS analysis of the self-assembly prepared from **9b**, PMMA₂₂₀-*b*-PTMA₅₀ in 1,4-dioxane.