Supporting Information

Biocatalytic Approach towards Sustainable Furanic-Aliphatic Polyesters

Yi Jiang ^{1,2}, Albert J. J. Woortman ¹, Gert O.R. Alberda van Ekenstein ¹, and Katja Loos ^{1,2,*}

¹ Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

² Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

* Tel: +31-50 363 6867, E-mail: k.u.loos@rug.nl

Figure S1. SEC retention curves of poly(hexamethylene furanoate) (PHF) from the temperaturevaried two-stage enzymatic polymerizations. The temperature indicated here is the reaction temperature during the last 24 h reaction.

Figure S2. SEC retention curves of poly(octamethylene furanoate) (POF) from the temperaturevaried two-stage enzymatic polymerizations. The temperature indicated here is the reaction temperature during the last 24 h reaction.

Figure S3. SEC retention curves of poly(decamethylene furanoate) (PDF) from the temperaturevaried two-stage enzymatic polymerizations. The temperature indicated here is the reaction temperature during the last 24 h reaction.

Figure S4. SEC retention curves of poly(diethylene glycol furanoate) (PDEGF) from the temperature-varied two-stage enzymatic polymerizations. The temperature indicated here is the reaction temperature during the last 24 h reaction.

Figure S5. SEC retention curves of poly(diethylene glycol furanoate) (PDEGF) from the temperature-varied two-stage enzymatic polymerizations at 95 °C. The reaction time started to count after keeping the reaction at 80 °C for 26 h.

			NMR ^d	SEC ^e			
Temperature (°C) ^a	Diol ^b	Polyester ^c	${}^{ar{M}_n}$ (g/mol)	${}^{ar{M}_n}$ (g/mol)	${}^{ar{M}_w}$ (g/mol)	$m{ heta}$ (${}^{ar{M}_w/ar{M}_n}$)	Yield (%) ^f
80	1,4-BDO	PBF	1100	1200	1700	1.42	77
95	1,4-BDO	PBF	1500	1400	2100	1.50	73
120	1,4-BDO	PBF	2300	1500	3600	2.40	52
140	1,4-BDO	PBF	2500	1600	5500	3.44	54
80	1,6-HDO	PHF	2200	2500	3800	1.52	93
95	1,6-HDO	PHF	3500	3800	5800	1.53	90
120	1,6-HDO	PHF	11300	27500	70300	2.56	88
140	1,6-HDO	PHF	15000	41100	106600	2.59	85
80	1,8-0D0	POF	2400	3300	4800	1.45	88
95	1,8-0D0	POF	4100	4600	7600	1.65	87
120	1,8-0D0	POF	10700	29500	72500	2.46	88
140	1,8-0D0	POF	11400	41000	87300	2.13	89
80	1,10-DDO	PDF	10100	23700	48700	2.05	94
95	1,10-DDO	PDF	9300	20000	37800	1.89	87
120	1,10-DDO	PDF	16100	43000	90700	2.11	90
140	1,10-DDO	PDF	16700	51600	104400	2.02	88
80	DEG	PDEGF	900	1000	1100	1.10	53
95	DEG	PDEGF	9900	9500	18300	1.93	73
120	DEG	PDEGF	10400	9800	20500	2.09	75
140	DEG	PDEGF	11400	10600	23300	2.20	95
95	2,3-BDO	P23BF	900	900	1100	1.22	84

Table S1. Molecular weights of the obtained furanic-aliphatic polyesters from the CALBcatalyzed polymerizations of DMFDCA and various α,ω -aliphatic linear diols via the temperature-varied two-stage method

^a The temperature is the reaction temperature during the last 24 h reaction; ^b 1,4-BOD = 1,4-butanediol, 1,6-HDO = 1,6-hexanediol, 1,8-ODO = 1,8-octanediol, 1,10-DDO = 1,10-decanediol, DEG = diethylene glycol, 2,3-BDO = 2,3-butanediol; ^c PBF = poly(butylene furanoate), PHF = poly(hexamethylene furanoate), POF = poly(octamethylene furanoate), PDF = poly(decamethylene furanoate), PDEGF = poly(diethylene glycol furanoate), P23BF = poly(2,3-butylene furanoate); ^d The number average molecular weight ($\overline{M}n$) was calculated from the ¹H-NMR spectra; ^e The number average molecular weight ($\overline{M}w$), and dispersity ($\mathcal{D}, \overline{M}w/\overline{M}n$) were determined by SEC in chloroform; ^f Isolation yield after purification in methanol except P23BF that was purified by hexane.

Temperature	High Molecular Weigh ${\bar M}_{\scriptscriptstyle W}$ > 1	t 000 g/mol)	(Low Molecular Weight ${ar M}_w$ around 500 g/mol)					
(°C) ª	Retention Volume (mL) ^b	Cumulative Weight Fraction (%) ^c		Retention Volume (mL) ^b	Cumulative Weight Fraction (%) $^{\circ}$				
80	14.32 - 18.38	97.7		18.38 - 19.25	2.3				
95	15.18 - 18.30	96.5		18.30 - 19.25	3.5				
120	14.10 - 18.28	91.5		18.28 - 19.25	8.5				
140	13.36 - 18.25	90.0		18.25 - 19.25	10.0				

Table S2. Cumulative weight fractions of poly(butylene furanoate) (PBF)

^a The temperature is the reaction temperature during the last 24 h reaction; ^b Retention volume was determined by SEC in chloroform; ^c Cumulative weight fraction was calculated from SEC using the universal calibration method.

			SEC °		
Catalyst ^a	Solvent ^b	$ar{M}_n$ (g/mol)	${\bar{M}}_w$ (g/mol)	$\boldsymbol{\vartheta}(^{ar{M}_w/ar{M}_n})$	Remark ^g
No CALB	Toluene	/ d	/ d	/ d	/
Fresh CALB ^a	Toluene	49400 ^e	101100 ^e	2.05 ^e	
Recycled CALB-1ª	Toluene	18700 ^e	40000 ^e	2.14 ^e	CALB was recycled from the temperature-varied two-stage enzymatic polymerization with DMFDCA in diphenyl ether using the following conditions: (1) 80 °C, 26 h; (2) 95 °C, 24 h; (3) 120 °C, 24h. ^h
Recycled CALB-2 ª	Toluene	21000 ^e	51000 °	2.43 ^e	CALB was recycled from the temperature-varied two-stage enzymatic polymerization with DMFDCA in diphenyl ether using the following conditions: (1) 80 °C, 26 h; (2) 95 °C, 24 h; (3) 140 °C, 24h. ^h
Used CALB	Diphenyl ether	18900 ^f	60500 ^f	3.20 ^f	CALB and diphenyl ether were heated up at: (1) 80 °C for the first 26 h; (2) 95 °C for another 24 h; (3) 120 °C for the final 24 h. ⁱ
Used CALB	Diphenyl ether	4100 ^f	10700 ^f	2.61 ^f	CALB and diphenyl ether were heated up at: (1) 80 °C for the first 26 h; (2) 95 °C for another 24 h; (3) 140 °C for the final 24h. ⁱ

Table S3. Molecular weights of polycaprolactone (PCL) from control reactions

^a The fresh and recycled CALB was dried overnight in the presence of P₂O₅ under high vacuum before use. ^b Solvent used for ring-opening polymerization of ε -caprolactone; ^c The number average molecular weight (\overline{M}_n), weight average molecular weight (\overline{M}_w), and dispersity (\mathcal{D} , $\overline{M}_w/\overline{M}_n$) of polycaprolactone (PCL) from the ring-opening polymerization were determined by SEC; ^d No PCL was obtained; ^e Molecular weights were determined by SEC in THF; ^f Molecular weights were determined by SEC in

CHCl₃; ^g DMFDCA = dimethyl 2,5-furandicarboxylate; ^h The recycled CALB was washed respectively with chloroform, methanol and deionized water three times. Then it was stored in a refrigerator at 0 - 8 °C; ⁱ After thermal treatment, the used CALB with diphenyl ether were directly applied for the ring-opening polymerization of ε -caprolactone.

		SE	C °	End groups ^d								
Temperature (°C) ^a	Polyester ^b	\overline{M}_n (g/mol) \overline{M}_w (g/mol)		Ester/-OH	Ester/Ester	-он/-он	Cyclic	Ester/Aldehyde				
80	PBF	1200	1700	1 st	2 nd	3 rd	Trace	N.D.				
95	PBF	1400	2100	1 st	2 nd	3 rd	4 th	Trace				
120	PBF	1500	3600	2 nd	1 st	4 th	3 rd	Trace				
140	PBF	1600	5500	1 st	3 rd	4 th	2 nd	N.D.				
80	PHF	2500	3800	1 st	2 nd	3 rd	4 th	N.D.				
95	PHF	3800	5800	1 st	2 nd	4 th	3 rd	Trace				
120	PHF	27500	70300	N.D.	N.D.	N.D.	1 st	N.D.				
140	PHF	41100	106600	N.D.	N.D.	N.D.	1 st	N.D.				
80	POF	3300	4800	1 st	3 rd	2 nd	4 th	N.D.				
95	POF	4600	7600	1 st	2 nd	3 rd	4 th	N.D.				
120	POF	29500	72500	N.D. N.D.		N.D. 1 st		N.D.				
140	POF	41000	87300	N.D.	N.D.	N.D.	1 st	N.D.				
80	PDF	23700	48700	N.D.	N.D.	1 st	2 nd	Trace				
95 ^e	PDF	20000	37800	Trace	Trace	Trace	1 st	Trace				
120	PDF	43000	90700	Trace	N.D.	Trace	1 st	N.D.				
140	PDF	51600	104400	N.D.	N.D.	N.D.	1 st	N.D.				
80	PDEGF	1000	1100	1 st	2 nd	3 rd	4 th	N.D.				
95	PDEGF	9500	18300	3 rd	1 st	Trace	2 nd	4 th				
120	PDEGF	9800	20500	4 th	1 st	Trace	2 nd	3 rd				
140	PDEGF	10600	23300	Trace	2 nd	N.D.	1 st	3 rd				
95 ^f	PDEGF	10900	23800	Trace	Trace	Trace	1 st	Trace				
95 ^g	PDEGF	12300	27800	Trace	Trace	N.D.	1 st	Trace				
95 ^h	PDEGF	31400	69400	N.D.	2 nd	N.D.	1 st	Trace				
95	P23BF	900	1100	2 nd	1 st	Trace	Trace	3 rd				

f able S4. MALDI-ToF MS analysis of the	obtained furanic-aliphatic polyesters
--	---------------------------------------

^a The temperature is the reaction temperature during the last 24 h reaction; ^b PBF = poly(butylene furanoate), PHF = poly(hexamethylene furanoate), POF = poly(octamethylene furanoate), PDF = poly(decamethylene furanoate), PDEGF = poly(diethylene glycol furanoate), P23BF = poly(2,3-butylene furanoate); ^c The number average molecular weight (^{M}n) and weight average molecular weight (^{M}w) were determined by SEC in CHCl₃; ^d The end groups were determined by MALDI-TOF MS. The marks, 1st, 2nd, 3rd, 4th, and Trace, represent the abundance sequence of the polymer species detected by MALDI-TOF MS from the most dominant (1st) to only detectable with trace amounts (Trace). N.D. = not detected; ^e

The polymerization was maintained at 95 °C for 48 h after reacted at 80 °C for 26 h; ^f The polymerization was maintained at 95 °C for 96 h after reacted at 80 °C for 26 h; ^g The polymerization was maintained at 95 °C for 124 h after reacted at 80 °C for 26 h; ^h The polymerization was maintained at 95 °C for 26 h.

Figure S6. The MALDI-ToF MS spectrum of poly(2,3-butylene furanoate) (P23BF, $M_w = 1100$ g/mol) with peak interpretations. A, B, C, D, E represent the five polyester species ionized by K⁺. They are terminated with ester/-OH, ester/ester, -OH/-OH, no end groups (cyclic), and ester/aldehyde groups, respectively. E' represents the polyesters with ester/aldehyde end groups that are ionized by Na⁺.

Figure S7. The MALDI-ToF MS spectrum of poly(butylene furanoate) (PBF, \overline{M}_w = 1700 g/mol) with peak interpretations.

Figure S8. The MALDI-ToF MS spectrum of poly(butylene furanoate) (PBF, \overline{M}_w = 5500 g/mol) with peak interpretations

Figure S9. The MALDI-ToF MS spectrum of poly(octamethylene furanoate) (POF, \overline{M}_w = 7600 g/mol) with peak interpretations

Figure S10. The MALDI-ToF MS spectrum of poly(octamethylene furanoate) (POF, \overline{M}_w = 72500 g/mol) with peak interpretations

Figure S11. The MALDI-ToF MS spectrum of poly(decamethylene furanoate) (PDF, \overline{M}_w = 37800 g/mol) with peak interpretations

Figure S12. The MALDI-ToF MS spectrum of poly(decamethylene furanoate) (PDF, M_w = 90700 g/mol) with peak interpretations

Figure S13. The MALDI-ToF MS spectrum of poly(diethylene glycol furanoate) (PDEGF, $M_w = 1100 \text{ g/mol}$) with peak interpretations

Figure S14. The MALDI-ToF MS spectrum of poly(diethylene glycol furanoate) (PDEGF, \overline{M}_w = 20500 g/mol) with peak interpretations

Figure S15. The MALDI-ToF MS spectrum of poly(diethylene glycol furanoate) (PDEGF, $M_w = 69400 \text{ g/mol}$) with peak interpretations

Figure S16. ¹H-NMR spectrum of dimethyl 2,5-furandicarboxylate (DMFDCA) in CDCl₃-d₁

Figure S17. WAXD spectra of poly(butylene furanoate) (PBF)

Figure S18. WAXD spectra of poly(hexamethylene furanoate) (PHF)

Figure S19. WAXD spectra of poly(octamethylene furanoate) (POF)

Figure S20. WAXD spectra of poly(decamethylene furanoate) (PDF)

Figure S21. WAXD spectra of poly(diethylene glycol furanoate) (PDEGF) and the monomer dimethyl 2,5-furandicarboxylate (DMFDCA).

		50.4			DSC ^d									704 0	
Polvme	s r ^a	EC®	waxD ^c		1 st Heating		Coo	oling		2 nd Heatin	g	TMDSC		IGA ^e	
,	$ar{M}_n$ (g/mol)	$ar{M}_w$ (g/mol)	<i>χ_c</i> (%)	T _m (°C)	ΔH _m (J/g)	ΔH ⁰ _m (J/g)	т _с (°С)	∆H _m (J/g)	Т _g (°С)	т _т (°С)	ΔH _m (J/g)	T _g (°C)	Т _{d-5%} (°С)	T _{d-10%} (°C)	T _{d-max} (°C)
PBF	1200	1700	56	145	70		112	54	25	147	65	26	311	334	393
PBF	1400	2100	52	156	66		123	55	30	156	64	34	330	359	397
PBF	1500	3600	44	167	52	123	132	47	31	167	48	31	347	365	398
PBF	1600	5500	42	168	49		140	46	33	169	46	36	337	362	396
PHF	2500	3800	53	143	71		107	65	11	143	69	12	354	365	395
PHF	3800	5800	47	146	65		112	61	14	146	57	13	363	373	397
PHF	16100	34200	36	147	52	135	99	47	13	146	41	14	358	371	397
PHF	27500	70300	36	144	46		90	38	15	143	34	15	362	372	398
PHF	41100	106600	37	140	47		83	34	15	140	29	16	361	370	397
POF	3300	4800	39	145	72		117	67	9	144	60	13	355	368	399
POF	4600	7600	40	147	70		116	63	9	146	57	12	363	373	399
POF	5800	12600	28	146	51	180	111	49	7	146	43	9	365	375	403
POF	29500	72500	29	145	52		105	44	6	144	37	6	371	380	404
POF	41000	87300	26	141	47		99	39	6	141	34	6	360	372	399
PDF	20000	37800	24	111	48		66	42	-8	111	37	-8	367	377	403
PDF	23700	48700	25	111	47		60	40	-5	110	34	-5	367	376	404
PDF	37000	75600	21	109	43	198	65	35	-7	108	29	-6	363	374	402
PDF	43000	90700	21	110	44		62	34	-6	107	30	-6	366	378	406
PDF	51600	104400	21	108	44		66	31	-5	106	25	-5	369	378	402

Table S5. Physical properties of the obtained furanic-aliphatic polyesters

PDECE	1000	1100	55	55 77	20	52 f	/ g	/	12	1	1	12	21/	245	/12
FDEGF	1000	1100	55	55,77	25	55	/-	/	15	/	/	12	514	545	415
PDEGF	9500	18300	0	/	/	/	/	/	33	/	/	33	363	388	421
PDEGF	10900	23800	0	/	/	/	/	/	39	/	/	40	375	387	415
PDEGF	12300	27800	0	/	/	/	/	/	40	/	/	42	371	384	415
PDEGF	31400	69400	0	/	/	/	/	/	40	/	/	41	363	385	415
P23BF	900	1100	0	/	/	/	/	/	46	/	/	47	276	308	360

^a PBF = poly(butylene furanoate), PHF = poly(hexamethylene furanoate), POF = poly(octamethylene furanoate), PDF = poly(decamethylene furanoate), PDEGF = poly(diethylene glycol furanoate), P23BF = poly(2,3-butylene furanoate); ^b The number average molecular weight (\overline{M}_n) and weight average molecular weight (\overline{M}_w) were determined by SEC in CHCl₃; ^c The degree of crystallinity (χ_c) was calculated from the WAXD spectrum. ^d T_m = melting temperature, ΔH_m = enthalpy of fusion, ΔH_m^0 = enthalpy of fusion when χ_c = 100 %, T_c = crystallization temperature, T_g = glass transition temperature, TMDSC = Temperature Modulated Differential Scanning Calorimetry; ^e T_{d-5%} = decomposition temperature at 5 % weight loss, T_{d-10%} = decomposition temperature at 10 % weight loss, T_{d-max} = temperature at maximum rate of decomposition; ^f Here $\Delta H_m^0 = 100 \times \Delta H_m \div \chi_c$; ^g / = not detected.

Figure S22. The degree of crystallinity (χ_c) and the enthalpy of fusion (ΔH_m , first heating scan) of poly(butylene furanoate) (PBF) as a function of the weight average molecular weight (\bar{M}_w)

Figure S23. The degree of crystallinity (χ_c) and the enthalpy of fusion (ΔH_m , first heating scan) of poly(hexamethylene furanoate furanoate) (PHF) as a function of the weight average molecular weight (\bar{M}_w)

Figure S24. The degree of crystallinity (χ_c) and the enthalpy of fusion (ΔH_m , first heating scan) of poly(octamethylene furanoate) (POF) as a function of the weight average molecular weight (\bar{M}_w)

Figure S25. The degree of crystallinity (χ_c) and the enthalpy of fusion (ΔH_m , first heating scan) of poly(decamethylene furanoate) (PDF) as a function of the weight-average molecular weight (\bar{M}_w)

Figure S26. Linear fit of the enthalpy of fusion $(^{\Delta H}_m)$ of poly(butylene furanoate) (PBF) as a function of the degree of crystallinity $(^{\chi}_c)$ using the equation: $^{\Delta H}_m = a + b \times \chi_c$, where a = 0.

Figure S27. Linear fit of the enthalpy of fusion ($^{\Delta H}_m$) of poly(hexamethylene furanoate) (PHF) as a function of the degree of crystallinity (χ_c) using the equation: $^{\Delta H}_m = a + b \times \chi_c$, where a = 0.

Figure S28. Linear fit of the enthalpy of fusion ($^{\Delta H}_m$) of poly(octamethylene furanoate) (POF) as a function of the degree of crystallinity (χ_c) using the equation: $^{\Delta H}_m = a + b \times \chi_c$, where a = 0.

Figure S29. Linear fit of the enthalpy of fusion ($^{\Delta H}_m$) of poly(decamethylene furanoate) (PDF) as a function of the degree of crystallinity (χ_c) using the equation: $^{\Delta H}_m = a + b \times \chi_c$, where a = 0.

Figure S30. The enthalpy of fusion ($^{\Delta H_m^0}$, 100 % degree of crystallization) of the furanci-aliphatic polyester as a function of the chain length of the diol units.

Figure S31. Representative TGA traces of the obtained furanic-aliphatic polyesters: (a) weight (%) as a function of temperature (°C); and (b) derivative weight (%/°C) versus temperature (°C).

Figure 32. DSC curves of the obtained furanic-aliphatic polyesters. The heating and cooling rate were 10 °C/min.

Figure S33. DSC curves of poly(diethylene glycol furanoate) (PDEGF, \overline{M}_w = 1100 g/mol). The heating and cooling rate were 10 °C/min.

Figure S34. DSC heating curves of poly(diethylene glycol furanoate) (PDEGF, \overline{M}_w = 18300 g/mol). The heating and cooling rate were 10 °C/min. After eliminated the thermal history, the sample was stored at 38.5 °C for 60 h before DSC measurement.

Figure 35. TMDSC (Temperature Modulated Differential Scanning Calorimetry) curves of furanic-aliphatic polyesters. The heating rate was 2 °C/min, with the temperature modulated at +/- 0.50 °C for every 60 seconds.