Supporting Information for:

Macro-RAFT agent mediated dispersion copolymerization: a small amount of solvophilic co-monomer leads to a great change

Pengfei Shi, Heng Zhou, Chengqiang Gao, Shuang Wang, Pingchuan Sun* and Wangqing Zhang*

Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

* To whom correspondence should be addressed. E-mail: wqzhang@nankai.edu.cn, Tel: 86-22-23509794, Fax: 86-22-23503510.

1. The ¹H NMR spectra of the polymerization solution and the equations

Figure S1. The ¹H NMR spectra of the polymerization solution after the RAFT dispersion polymerization of 4VP and St.

$$Conversion_{4VP}\% = \frac{I_{7.90-8.60} - 2I_{5.50-5.55}}{I_{7.90-8.60}} \times 100\%$$
(S1)

$$Conversion_{St} \% = \frac{2I_{6.10 \sim 6.80} - I_{7.90 \sim 8.60} - I_{5.20 \sim 5.30}}{2I_{6.10 \sim 6.80} - I_{7.90 \sim 8.60}} \times 100\%$$
(S2)

$$Conversion_{St/4VP} \% = \frac{n_{st} \times Conversion_{St} + n_{4VP} \times Conversion_{4VP}}{n_{St} + n_{4VP}} \times 100\%$$
(S3)

in which, n_{St} and n_{4VP} are the initial molar quantity of the feeding styrene and 4-vinylpyridine, respectively.

2. Summary of the synthesized polymers

Entry			St] ₀ :[4VP] ₀	Time (h)	Conv _{St and 4VP} ^a (%)	Conv _{St/4VP} ^b	$M_{\rm n}$ (kg/mol)			$\mathrm{PDI}^{\mathrm{f}}$
		Polymer				(%)	$M_{\rm n,th}^{\rm c}$	$M_{n,GPC}^{d}$	$M_{n,NMR}^{e}$	-
Fig S2-4	1A	PEG ₄₅ -TTC		0			2.4	2.9	2.3	1.05
	1B	PEG ₄₅ - <i>b</i> -PS ₃₉	6.0:0	2	9.9/	9.9	6.4	9.2	6.5	1.08
	1C	PEG ₄₅ - <i>b</i> -PS ₅₄	6.0:0	4	13.4/	13.4	8.0	11.1	7.9	1.07
	1D	PEG ₄₅ - <i>b</i> -PS ₆₉	6.0:0	6	17.4/	17.4	9.5	12.3	9.2	1.18
	1E	PEG ₄₅ - <i>b</i> -PS ₉₂	6.0:0	8	23.0/	23.0	11.7	15.0	11.3	1.11
	1F	PEG ₄₅ - <i>b</i> -PS ₁₂₈	6.0:0	10	32.0/	32.0	15.7	19.6	15.2	1.12
	1G	PEG ₄₅ - <i>b</i> -PS ₁₆₀	6.0:0	12	40.1/	40.1	19.0	22.5	18.5	1.11
	$1 \mathrm{H}$	PEG ₄₅ - <i>b</i> -PS ₂₅₀	6.0:0	15	62.4/	62.4	26.0	29.8	27.1	1.09
	11	PEG ₄₅ - <i>b</i> -PS ₃₀₄	6.0:0	18	76.0/	76.0	34.0	38.2	35.3	1.11
	1J	PEG ₄₅ - <i>b</i> -PS ₃₇₃	6.0:0	21	93.2/	93.2	41.2	46.1	43.0	1.10
	1K	PEG ₄₅ - <i>b</i> -PS ₃₈₄	6.0:0	24	96.6/	96.6	42.3	50.3	47.3	1.12
Fig 1-4	2A	PEG ₄₅ - <i>b</i> -PS ₃₈₄	6.0:0	24	96.6/	96.6	42.3	50.3	47.3	1.12
	2B	PEG ₄₅ -b-P(4VP ₅₇ -co-St ₃₁₅)	5.0:1	36	94.5/85.9	93.1	41.2	45.7	42.2	1.10
	2C	PEG ₄₅ - <i>b</i> -P(4VP ₇₁ - <i>co</i> -St ₃₀₅)	4.0:1	36	95.4/88.2	94.0	41.6	48.6	43.9	1.10
	2D	PEG ₄₅ - <i>b</i> -P(4VP ₈₇ - <i>co</i> -St ₂₈₂)	3.0:1	36	94.1/87.3	92.4	40.9	47.7	43.2	1.11
	2E	PEG ₄₅ - <i>b</i> -P(4VP ₉₈ - <i>co</i> -St ₂₆₇)	2.5:1	36	93.5/85.4	91.2	40.6	46.6	42.9	1.18
	2F	PEG ₄₅ - <i>b</i> -P(4VP ₁₁₃ - <i>co</i> -St ₂₄₇)	2.0:1	36	92.5/84.5	89.8	40.2	45.3	42.7	1.10
	2G	PEG ₄₅ - <i>b</i> -P(4VP ₁₃₃ - <i>co</i> -St ₂₂₃)	1.5:1	36	93.0/83.4	89.2	40.1	49.5	45.5	1.23
Fig 5-7	3A	PEG ₄₅ -TTC		0			2.4	2.9	2.3	1.05
	3B	PEG ₄₅ - <i>b</i> -P(4VP ₁₄ - <i>co</i> -St ₄₁)	3.0:1	4	13.8/13.7	13.7	8.1	12.2	9.1	1.11
	3C	PEG ₄₅ -b-P(4VP ₂₅ -co-St ₇₈)	3.0:1	7	26.0/24.8	25.7	13.1	17.9	14.7	1.12
	3D	PEG ₄₅ - <i>b</i> -P(4VP ₃₆ - <i>co</i> -St ₁₁₅)	3.0:1	10	38.4/36.3	37.9	18.1	21.9	18.5	1.10
	3E	PEG ₄₅ - <i>b</i> -P(4VP ₅₀ - <i>co</i> -St ₁₆₄)	3.0:1	13	54.8/49.7	53.5	24.7	29.4	25.5	1.11
	3F	$PEG_{45}-b-P(4VP_{62}-co-St_{201})$	3.0:1	16	67.1/62.0	65.8	29.8	33.7	30.2	1.12
	3G	PEG ₄₅ - <i>b</i> -P(4VP ₆₈ - <i>co</i> -St ₂₂₁)	3.0:1	18	73.6/68.1	72.2	32.5	36.7	34.0	1.10
	3H	PEG ₄₅ - <i>b</i> -P(4VP ₇₃ - <i>co</i> -St ₂₃₇)	3.0:1	20	78.9/72.7	77.3	34.7	39.2	36.2	1.09
	3I	PEG ₄₅ - <i>b</i> -P(4VP ₇₉ - <i>co</i> -St ₂₅₉)	3.0:1	25	86.2/79.3	84.5	37.6	42.5	39.9	1.10
	3J	PEG ₄₅ - <i>b</i> -P(4VP ₈₄ - <i>co</i> -St ₂₇₅)	3.0:1	30	91.6/84.1	89.7	39.8	44.7	41.9	1.10
	3K	PEG ₄₅ - <i>b</i> -P(4VP ₈₇ - <i>co</i> -St ₂₈₂)	3.0:1	36	94.1/87.3	92.4	40.9	47.7	43.2	1.11
Fig 8	4A	PEG ₄₅ - <i>b</i> -PS ₁₀₀	6.0:0	24	99.9/	99.9	12.8	14.5	13.4	1.18
	4B	PEG ₄₅ - <i>b</i> -PS ₂₀₀	6.0:0	24	99.9/	99.9	23.2	26.8	25.1	1.16
	4C	PEG ₄₅ - <i>b</i> -PS ₂₉₄	6.0:0	24	98.2/	98.2	33.0	38.9	36.7	1.15
	4D	PEG ₄₅ - <i>b</i> -PS ₃₈₄	6.0:0	24	96.6/	96.6	42.3	50.3	47.3	1.12
	4E	PEG ₄₅ - <i>b</i> -P(4VP ₂₄ - <i>co</i> -St ₇₄)	3.0:1	36	98.9/96.1	98.2	12.6	15.9	14.2	1.11
	4F	PEG ₄₅ - <i>b</i> -P(4VP ₄₇ - <i>co</i> -St ₁₄₇)	3.0:1	36	98.3/94.6	97.4	22.6	28.7	26.4	1.17
	4G	PEG ₄₅ - <i>b</i> -P(4VP ₆₈ - <i>co</i> -St ₂₂₀)	3.0:1	36	97.6/91.1	96.0	32.4	38.6	36.1	1.12
	4H	PEG ₄₅ - <i>b</i> -P(4VP ₈₇ - <i>co</i> -St ₂₈₂)	3.0:1	36	94.1/87.3	92.4	40.9	47.7	43.2	1.11

Table S1. Summary of the synthesized polymers.

^a The conversion of the St and 4VP monomers determined by ¹H NMR analysis. ^b The

St/4VP conversion calculated by equation S3. ^c Theoretical molecular weight determined by monomer conversion. ^d The molecular weight determined by GPC analysis. ^e The molecular weight determined by ¹H NMR analysis. ^f The PDI (M_w/M_n) value determined by GPC analysis.

3. Polymerization kinetics of the dispersion RAFT polymerization of St

Figure S2. The monomer conversion-time plot for the dispersion RAFT polymerization of St (**•**) and the dispersion RAFT copolymerization of St/4VP (**V**). Polymerization conditions: $[St]_0$: $[PEG_{45}$ -TTC]_0:[AIBN]_0 = 1200: 3:1 or $[St]_0:[4VP]_0:[PEG_{45}$ -TTC]_0:[AIBN]_0 = 900:300:3:1, 70 °C. Note: the St/4VP conversion is defined by eq S3.

Figure S3. The GPC traces (A) and evolution of the molecular weight and the PDI (M_w/M_n) value (B) of the E-*b*-S diblock copolymer synthesized through the dispersion RAFT polymerization of St. Polymerization conditions can be found in the caption for Figure S2.

Figure S4. TEM images of the synthesized E-*b*-S diblock copolymer nano-objects prepared at the polymerization times. Polymerization conditions can be found in the caption for Figure S2.