Effect of With/Without Resonance-mediated Interactions on the Molecular Weight and Photovoltaic Performance of Polymers with Bis-Tolane as an Integrated Part of the Benzodithiophene Donor Unit for Efficient and Stable Organic Solar Cells

Nallan Chakravarthi, ${ }^{\dagger}$ Kumarasamy Gunasekar, ${ }^{\dagger}$ Kakaraparthi Kranthiraja, ${ }^{\dagger}$ Taeik Kim, ${ }^{\dagger}$
Woosum Cho, ${ }^{\dagger}$ Chang Su Kim, ${ }^{\ddagger}$ Dong-Ho Kim, ${ }^{\ddagger}$ Myungkwan Song, ${ }^{*}{ }^{\star}$ and Sung-Ho Jin ${ }^{*}, \dagger$
${ }^{\dagger}$ Department of Chemistry Education, Graduate Department of Chemical Materials, BK 21
PLUS Team for Advanced Chemical Materials, and Institute for Plastic Information and Energy
Materials, Pusan National University, Busan, 609-735, Republic of Korea
\#Surface Technology Division, Korea Institute of Materials Science, Changwon 641-831, Republic of Korea

Corresponding author. Tel.: +8251510 2727; Fax: +82515812348.
*E-mail: smk1017@kims.re.kr (M. Song), shjin@pusan.ac.kr (S.-H. Jin)

■ EXPERIMENTAL SECTION

Materials. All reagents were purchased from Aldrich, Solarmer or Alfa-Aesar and used without further purification. (2,5-diethylhexyl-3,6-bis(5-bromothien-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione) was synthesized according to the reported procedure in the literature. ${ }^{1}$ Moisture sensitive reactions were conducted in the presence of N_{2} atmosphere. The other materials were common chemicals used as received. THF was dried over $\mathrm{Na} /$ benzophenone ketyl and freshly distilled prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury Plus 300 MHz spectrometer in CDCl_{3} using tetramethylsilane as an internal reference. The chemical shifts were accounted in ppm related to the singlet of CDCl_{3} at 7.26 and 77 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively. The UV-visible absorption spectra were recorded on a JASCO V-570 spectrophotometer. Polymerization was performed in a CEM-focused microwave TM synthesis system. The weight-average molecular weight $\left(\mathrm{M}_{\mathrm{w}}\right)$, number-average molecular weight $\left(\mathrm{M}_{\mathrm{n}}\right)$ and PDI of the polymers were determined by GPC using a PL gel $5 \mu \mathrm{~m}$ MLXED-C column on an Agilent 1100 series liquid chromatography system with THF as an eluent and calibration with polystyrene standards. Thermal analysis was carried out on a Mettler Toledo TGA/SDTA 851e, DSC 822e analyzer under N_{2} atmosphere at a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. The CV analysis was carried out in a 0.1 M solution of tetrabutylammonium perchlorate in anhydrous acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ using a CHI 600 C potentiostat (CH Instruments), a three-electrode cell with platinum electrode as the working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode, and a platinum (Pt) wire as the counter electrode. Polymer thin films were coated on the Pt electrode and dried before the experiment. X-ray diffraction measurements were carried out with $\mathrm{Cu} \mathrm{K} \alpha$ $(\lambda=1.54 \AA$) in a diffractometer (X'pert PRO MRD, Philips) equipped with Göbel mirror. Incidence angle was fixed at 0.17°, the angle between the critical angle of the polymer and the
substrate. The detector was scanned the angle (2Θ) from 10° to 90°, similar geometry as in the grazing incidence wide angle scattering.

Fabrication and Characterization of BHJ IOSCs. For the IOSCs, the device configuration is $\mathrm{ITO} / \mathrm{ZnO}(60 \mathrm{~nm}) /$ polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})$ or polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})+3 \% \mathrm{DIO} /$ Methanol treatment/PEDOT:PSS $(10 \mathrm{~nm}) /$ Ag $(100 \mathrm{~nm})$. The ITO-coated glass substrates used for fabrication were ultrasonically cleaned with detergent, water, acetone, and isopropyl alcohol. The ZnO precursor was prepared by dissolving zinc acetate dihydrate $\left(\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$, $1.64 \mathrm{~g})$ and ethanolamine $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, 0.5 \mathrm{~g}\right)$ in 10 g of 2-methoxyethanol, under vigorous stirring for 20 min for the hydrolysis reaction in air. The ZnO layer was spin cast from the precursor solution on top of the clean ITO-coated glass substrate, and annealed at $150{ }^{\circ} \mathrm{C}$ for 10 min in air. The photoactive layer of polymer: $\mathrm{PC}_{71} \mathrm{BM}$ was cast from a solution with the ratio of 1:0.7, 1:1.5, and 1:2 that was dissolved in 1 mL of CB and then spin coated at a rate of 1200 rpm for 30 s in a N_{2} glove box. After drying in a vacuum, various solvent treatments were carried out. Finally, $\sim 10 \mathrm{~nm}$ PEDOT:PSS (CLEVIOS PVP AI 4083):IPA (1:10 v/v\%) and $\sim 100 \mathrm{~nm} \mathrm{Ag}$ layers were deposited on the photoactive layer. The top metal electrode area, comprising the active area of the solar cell, was $0.38 \mathrm{~cm}^{2}$. The $J-V$ characteristics of the devices were measured using a Keithley 2400 source measure unit under a calibrated AM 1.5 G solar simulator (Oriel ${ }^{\circledR}$ Sol3A ${ }^{\text {TM }}$ Class AAA solar simulator, models 94043 A) at $100 \mathrm{~mW} / \mathrm{cm}^{2}$. The intensity of sunlight illumination was calibrated using a standard Si photodiode detector with a KG-5 filter. The IPCE measurement system (Oriel IQE-200) was composed of a 250 W quartz-tungsten-halogen lamp as the light source, and a monochromator, optical chopper, lock-in amplifier, and calibrated silicon photodetector. All IOSCs data were confirmed for more than 10 iterations under the same
condition. While measuring the $J-V$ curves for IOSCs, a black mask was used and only the effective area of the cell was exposed to light irradiation.

Hole and electron mobility. The hole mobility of bare polymers were calculated by fabricating the device structure of ITO/PEDOT:PSS/polymer $/ \mathrm{MoO}_{3} / \mathrm{Al}$. The hole and electron mobility were evaluated from the $J-V$ characteristics of single charge carrier devices and the results were subsequently fit using the SCLC method. The hole-only devices for BHJ composites were fabricated as follows: ITO/PEDOT:PSS(40 nm)/polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})$ or polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})+3 \% \mathrm{DIO}$ or polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})+3 \% \mathrm{DIO}$ (methanol treatment)/PEDOT:PSS $(50 \mathrm{~nm}) / \mathrm{A} 1(100 \mathrm{~nm})$. The electron-only devices were fabricated using the following device configuration: $\mathrm{ITO} / \mathrm{ZnO}(60 \mathrm{~nm}) /$ polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})$ or polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})+3 \% \mathrm{DIO}$ or polymer: $\mathrm{PC}_{71} \mathrm{BM}(100 \mathrm{~nm})+3 \% \mathrm{DIO}$ (methanol treatment)/LiF/Al (150 nm). The mobility was determined by fitting the dark $J-V$ curve into the SCLC model, based on the equation described by the Mott-Gurney law.
$\mathrm{J}=(9 / 8) \varepsilon_{\mathrm{r}} \varepsilon_{0} \mu\left(\mathrm{~V}^{2} / \mathrm{L}^{3}\right)$

Where ε_{r} is the dielectric constant $\left(\varepsilon_{\mathrm{r}}=3\right), \varepsilon_{0}$ the permittivity of free space, L the thickness of the photoactive layer, μ the charge mobility and V the voltage drop across the device.

Impedance Spectroscopy. The impedance response was measured over the range of 1 Hz to 1 MHz with an oscillation amplitude of 15 mV (Bio-Logic VMP-3). The experimental data were simulated using commercial Z-view software to estimate the values for each component of the corresponding equivalent circuits.
((3-Bromophenyl)ethynyl)trimethylsilane (1). To a 50 mL flask was added the 1,3dibromobenzene ($2 \mathrm{~g}, 8.41 \mathrm{mmol}$), bis (triphenylphosphine)palladium (II) dichloride ($0.294 \mathrm{~g}, 5$ mol \%), and copper (I) iodide ($0.079 \mathrm{~g}, 5 \mathrm{~mol} \%$). 30 mL of tetrahydrofuran (THF) was added followed by $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$. Then, trimethylsilylacetylene $(1.198 \mathrm{~mL}, 8.41 \mathrm{mmol})$ was added at room temperature and further stirred for 3 h . After the reaction was completed, solvent was removed under pressure and the resulting residue was extracted with methylene chloride (MC), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as brown oil, which was then purified by column chromatography on silica gel using hexane as an eluent to obtain a colorless liquid ($1.6 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.64(\mathrm{~d}$, $1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 133.74, 132.46, 130.40, 128.12, 126.12, 125.74 103.68, 100.12, 0.00 .
((4'-(2-Ethylhexyloxy)biphenyl-3-yl)ethynyl)trimethylsilane (2). 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (10 $\mathrm{mL})$ was added to a mixture of ((3-bromophenyl)ethynyl)trimethylsilane ($3 \mathrm{~g}, 11.8 \mathrm{mmol}$), 2-(4-(2-ethylhexyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.58 g, 14.2 mmol), and tetrakis(triphenylphosphine)palladium ($0.136 \mathrm{~g}, 0.03 \mathrm{mmol}$) dissolved in 24 mL of toluene. The mixture was refluxed for 12 h under N_{2} atmosphere. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using ethylacetate (EA)/hexane (4:1) as the eluent to produce a colorless liquid. Yield: $60 \%{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, 2 \mathrm{H}), 3.84(\mathrm{~d}, 2 \mathrm{H}), 1.64-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.22-1.54(\mathrm{~m}, 8 \mathrm{H}), 0.84(\mathrm{~m}, 6 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $158.84,141.42,133.16,131.79,129.78,127.31,126.52,125.81,123.32,115.37,105.89,94.32$, 72.14, 39.84, 31.17, 29.82, 23.21, 22.84, 14.13, 11.84, 0.00.

4'-(2-Ethylhexyloxy)-3-ethynylbiphenyl [BPA(H)]. ((4'-(2-Ethylhexyloxy)biphenyl-3yl)ethynyl)trimethylsilane ($1.2 \mathrm{~g}, 3.12 \mathrm{mmol}$) was dissolved in 20 mL of MC and a solution of 1.4 g of potassium hydroxide dissolved in 25 mL of methanol was added. The reaction mixture was stirred at room temperature for 2 h before quenching with water (150 mL) and extracted with MC (80 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as yellow oil, which was then purified by column chromatography on silica gel using EA/hexane (3:1) as an eluent to obtain a colorless liquid ($0.9 \mathrm{~g}, 83 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}), 3.92(\mathrm{~d}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H})$, $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 158.84,141.42$, $133.16,131.79,129.78,127.31,126.52,125.81,123.32,115.37,84.31,72.14,39.84,31.17$, 29.82, 23.21, 22.84, 14.13, 11.84.

4,8-Bis(4'-(2-ethylhexyloxy)-3-ethynylbiphenyl)benzo[1,2-b:4,5-b']dithiophene (3). n-BuLi ($2.5 \mathrm{M}, 1.1 \mathrm{~mL}$) was added dropwise to a solution of 4'-(2-ethylhexyloxy)-3-ethynylbiphenyl $(0.7 \mathrm{~g}, 2.9 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The temperature of the reaction mixture was raised to $50{ }^{\circ} \mathrm{C}$ and stirred for $1.5 \mathrm{~h} .4,8$-Dihydrobenzo[1,2-b:4,5b^{\prime}]dithiophene-4,8-dione ($0.3 \mathrm{~g}, 1.3 \mathrm{mmol}$) was added directly to the reaction mixture at $50{ }^{\circ} \mathrm{C}$, which was then stirred for 2 h at the same temperature. Subsequently, the reaction mixture was cooled to room temperature and $\mathrm{tin}(\mathrm{II})$ chloride dihydrate $(1.9 \mathrm{~g}, 19.75 \mathrm{mmol})$ in $15 \% \mathrm{HCl}(20$ mL) was added and further stirred for 1.5 h , before being poured into ice water. The reaction mixture was extracted with diethyl ether, the resultant organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as brown oil, which was then purified by column chromatography on silica gel using hexane as an eluent to obtain a yellow solid ($0.5 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.84(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~d}, 2 \mathrm{H})$,
$7.52-7.64(\mathrm{~m}, 10 \mathrm{H}), 7.48(\mathrm{~d}, 2 \mathrm{H}), 7.02(\mathrm{~d}, 4 \mathrm{H}), 3.84(\mathrm{~d}, 4 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.48(\mathrm{~m}, 14 \mathrm{H})$, 0.78-0.98 (m, 12H). ${ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 158.84,141.84,140.42,138.74$, $132.14,129.76,126.21,125.79,123.52,115.43,115.21,112.26,99.89,86.24,71.31,39.84$, 31.17, 29.82, 23.21, 22.84, 14.13, 11.84.

2,6-(Trimethyltin)-4,8-bis(4'-(2-ethylhexyloxy)-3-ethynylbiphenyl)benzo[1,2-b:4,5-

\mathbf{b}^{\prime}]dithiophene [BDTBPA(H)]. A solution of compound $4(0.5 \mathrm{~g}, 0.6 \mathrm{mmol})$ in THF (30 mL) was placed in a 50 mL flask, which was flushed with N_{2} and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ using dry ice/acetone. To the cooled solution, tert-BuLi ($1.7 \mathrm{M}, 0.73 \mathrm{~mL}$) was added slowly and stirred for another 30 min at $-78^{\circ} \mathrm{C}$ and trimethyltin chloride ($0.25 \mathrm{~g}, 1.2 \mathrm{mmol}$) was directly added as a solid. The solution was slowly warmed to room temperature and stirred overnight. Aqueous sodium carbonate (20 mL) was added slowly to the solution and extracted with MC (30 mL). The resultant organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford a yellow residue, which was recrystallized from ethanol to obtain a yellow solid ($0.45 \mathrm{~g}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, 2 \mathrm{H}), 7.54-7.66$ $(\mathrm{m}, 8 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.04(\mathrm{~d}, 4 \mathrm{H}), 3.92(\mathrm{~d}, 4 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.52(\mathrm{~m}$, $16 \mathrm{H}), 0.82-0.98(\mathrm{~m}, 12 \mathrm{H}), 0.39-0.58(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 159.294$, 144.77, 143.68, 141.26, 139.08, 132.54, 130.89, 130.05, 129.97, 128.87, 128.19, 127.15, 123.46, $114.90,98.63,86.28,70.57,39.38,30.54,29.10,23.86,23.09,14.15,11.15,-8.18$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{70} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$: C, 64.07; H, 6.27; O, 2.84; S, 5.70; $\mathrm{Sn}, 21.11$. Found: C, 63.92; H, 6.38 .

4'-(2-Ethylhexyloxy)-2,4-difluorobiphenyl (4). 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$ were added to a mixture of 1-bromo-4-(2-ethylhexyloxy)benzene ($3 \mathrm{~g}, 10 \mathrm{mmol}$), 2,4-difluorophenylboronic $\operatorname{acid}(2.15 \mathrm{~g}, 13 \mathrm{mmol})$, and tetrakis(triphenylphosphine) palladium $(0.607 \mathrm{~g}, 0.1 \mathrm{mmol})$ dissolved in toluene (24 mL) and ethanol (12 mL). The mixture was refluxed for 12 h under N_{2}
atmosphere. After cooling to room temperature, the mixture was extracted with MC and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using EA/hexane (4:1) as an eluent to produce a colorless liquid ($3.2 \mathrm{~g}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.32-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.82-$ $6.98(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~d}, 2 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.52(\mathrm{~m}, 8 \mathrm{H}), 0.82-0.98 \quad(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl3): $\delta(\mathrm{ppm}) 162.89,161.47,160.02,159.28,158.74,132.93,130.76$, $129.17,127.73,124.32,114.82,112.13,104.98,70.73,38.94,31.13,28.95,22.71,14.15,11.15$.

4'-(2-Ethylhexyloxy)-2,4-difluoro-3-iodobiphenyl (5). A solution of compound 6 (2 g, 6.2 mmol) in THF (30 mL) was placed in a 50 mL flask, flushed with N_{2} and cooled to $-78{ }^{\circ} \mathrm{C}$ using dry ice/acetone. LDA (2 M in THF/pentane, 3.77 mL) was added slowly, the solution was stirred for another 30 min at $-78^{\circ} \mathrm{C}$ and iodine ($1.75 \mathrm{~g}, 6.9 \mathrm{mmol}$) in 20 mL of THF was added. The solution was slowly warmed to room temperature and stirred overnight. The reaction was quenched with water, extracted with EA. The resultant organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford a yellow residue, which was purified by column chromatography on silica gel using EA/hexane (1:1) as an eluent to produce a colorless liquid ($2.1 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.28-7.44(\mathrm{~m}, 3 \mathrm{H}), 6.84-7.02(\mathrm{~m}$, $3 \mathrm{H}), 3.84(\mathrm{~d}, 2 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.52(\mathrm{~m}, 8 \mathrm{H}), 0.80-0.98(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 162.89,161.47,160.02,159.28,158.74,132.93,130.76,129.17,127.73$, $124.32,114.82,112.13,70.73,38.94,31.13,28.95,22.71,14.15,11.15$.
((4'-(2-Ethylhexyloxy)-2,4-difluorobiphenyl-3-yl)ethynyl)trimethylsilane (6). To a 100 mL flask was added the compound $7(2 \mathrm{~g}, 4.51 \mathrm{mmol})$, bis (triphenylphosphine)palladium (II) dichloride ($0.105 \mathrm{~g}, 5 \mathrm{~mol} \%$), and copper (I) iodide ($0.025 \mathrm{~g}, 5 \mathrm{~mol} \%$). The vessel was then sealed with a rubber septum, evacuated and backfilled with argon three times. 25 mL of THF
was added followed by 10 mL of $\mathrm{Et}_{3} \mathrm{~N}$. Then, trimethylsilylacetylene ($0.763 \mathrm{~mL}, 5.4 \mathrm{mmol}$) was added at room temperature and further stirred for 3 h . After the reaction was completed, solvent was removed under pressure and the resulting residue was extracted with MC, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as brown oil, which was then purified by column chromatography on silica gel using hexane as an eluent to obtain a colorless liquid ($1.5 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.34-7.42(\mathrm{~m}, 3 \mathrm{H})$, 6.92-6.98(m, 3H), $3.84(\mathrm{~d}, 2 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.48(\mathrm{~m}, 8 \mathrm{H}), 0.82-0.98(\mathrm{~m}, 6 \mathrm{H})$, $0.22-0.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 162.74,161.32,160.22,159.48$, 158.94, 133.03, 131.89, 129.82, 127.93, 125.32, 115.42, 112.43, 70.73, 38.94, 31.13, 28.95, $22.71,14.15,11.15,0.00$.

4'-(2-Ethylhexyloxy)-3-ethynyl-2,4-difluorobiphenyl [BPA(F)]. ((4'-(2-Ethylhexyloxy)-2,4-difluorobiphenyl-3-yl)ethynyl)trimethylsilane ($1.4 \mathrm{~g}, 3.3 \mathrm{mmol}$) was dissolved in 30 mL of MC and a solution of 1.6 g of potassium hydroxide dissolved in 25 mL of methanol was added. The reaction mixture was stirred at room temperature for 2 h before quenching with water $(100 \mathrm{~mL})$ and extracted with $\mathrm{MC}(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as yellow oil, which was then purified by column chromatography on silica gel using EA/hexane (3:1) as an eluent to obtain a colorless liquid ($0.9 \mathrm{~g}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.32-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.92-7.04(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~d}, 2 \mathrm{H}), 3.52(\mathrm{~s}$, $1 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.52(\mathrm{~m}, 8 \mathrm{H}), 0.82-0.98(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 162.74, 161.32, 160.22, 159.48, 158.94, 133.03, 131.89, 129.82, 127.93, 125.32, 115.42, $112.43,86.42,70.73,38.94,31.13,28.95,22.71,14.15,11.15$.

4,8-Bis(4'-(2-ethylhexyloxy)-3-ethynyl-2,4-difluorobiphenyl)benzo[1,2-b:4,5-

\mathbf{b}^{\prime}]dithiophene (7). $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}, 1.19 \mathrm{~mL})$ was added dropwise to a solution of $4^{\prime}-(2-$
ethylhexyloxy)-3-ethynyl-2,4-difluorobiphenyl ($1.02 \mathrm{~g}, 2.9 \mathrm{mmol}$) in THF (25 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The temperature of the reaction mixture was raised to $50^{\circ} \mathrm{C}$ and stirred for 1.5 h. 4,8-Dihydrobenzo[1,2-b:4,5-b]dithiophene-4,8-dione ($0.3 \mathrm{~g}, 1.3 \mathrm{mmol}$) was added directly to the reaction mixture at $50^{\circ} \mathrm{C}$, which was then stirred for 2 h at the same temperature. Subsequently, the reaction mixture was cooled to room temperature and tin (II) chloride dihydrate $(1.9 \mathrm{~g}, 19.75 \mathrm{mmol})$ in $15 \% \mathrm{HCl}(20 \mathrm{~mL})$ was added and further stirred for 1.5 h , before being poured into ice water. The reaction mixture was extracted with diethyl ether, the resultant organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford the crude compound as brown oil, which was then purified by column chromatography on silica gel using hexane as an eluent to obtain a yellow solid $(0.48 \mathrm{~g}, 40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.76-7.80 (d, 2H), 7.60-7.66 (d, 2H), 7.38-7.52 (m, 6H), 6.98-7.08 (m, 6H), $3.92(\mathrm{~d}, 4 \mathrm{H})$, $1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.52(\mathrm{~m}, 16 \mathrm{H}), 0.82-0.98(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 163.10, 159.73, 159.60, 159.32, 157.57, 140.26, 138.41, 130.74, 130.02, 129.99, 128.73, $128.53,126.40,125.30,125.13,125.12,114.62,111.73,111.50,111.17,102.41,95.34,86.65$, $70.50,39.38,30.52,29.119,23.86,23.11,14.16,11.16$.

2,6-(Trimethyltin)-4,8-bis(4'-(2-ethylhexyloxy)-3-ethynyl-2,4-difluorobiphenyl)benzo[1,2-

b:4,5-b']dithiophene [BDTBPA(F)]: A solution of compound $4(1 \mathrm{~g}, 1.1 \mathrm{mmol})$ in THF (30 mL) was placed in a 50 mL flask, which was flushed with N_{2} and the solution was cooled to -78 ${ }^{\circ} \mathrm{C}$ using dry ice/acetone. To the cooled solution, tert-BuLi ($1.7 \mathrm{M}, 1.3 \mathrm{~mL}$) was added slowly and stirred for another 30 min at $-78^{\circ} \mathrm{C}$ and trimethyltin chloride ($0.45 \mathrm{~g}, 2.2 \mathrm{mmol}$) was directly added as a solid. The solution was slowly warmed to room temperature and stirred overnight. Aqueous sodium carbonate (20 mL) was added slowly to the solution and extracted with MC (30 mL). The resultant organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was
evaporated to afford a yellow residue, which was recrystallized from ethanol to obtain a yellow solid ($0.9 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, 2 \mathrm{H}), 7.54-7.66$ $(\mathrm{m}, 8 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.04(\mathrm{~d}, 4 \mathrm{H}), 3.92(\mathrm{~d}, 4 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.52(\mathrm{~m}$, $16 \mathrm{H}), 0.82-0.98(\mathrm{~m}, 12 \mathrm{H}), 0.39-0.58(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 163.13, $159.86,159.73,159.48,157.67,140.47,138.61,130.92,130.18,130.03,128.82,128.56,126.60$, $125.39,125.23,125.18,111.86,111.62,111.24,95.24,86.85,70.58,39.48,30.72,29.31,23.76$, 23.21, 14.18, 11.22, -8.18. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$: C, 60.22; H, 5.56; F, 6.35; O, 2.67; S, 5.36; Sn, 19.84. Found: C, 60.12; H, 5.72.

Polymerization for PBDTBPA(H)-DPP. BDTBPA(H) ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) and DPP (121 $\mathrm{mg}, 0.5 \mathrm{mmol})$ were dissolved in $\mathrm{CB}(10 \mathrm{~mL})$. The reaction mixture was flushed with argon for 15 min and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(6 \mathrm{mg}, 2 \mathrm{~mole} \%)$, and $(o-\text { tolyl })_{3} \mathrm{P}(14 \mathrm{mg}, 16 \mathrm{~mole} \%)$ was added and purged five times continuously with vacuum and argon. The reaction mixture was heated to 120 ${ }^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature, the reaction mixture was poured into methanol to afford a precipitate, which was purified by Soxhlet extraction method using methanol, hexane and acetone, and then extracted in CF, which was evaporated to afford PBDTBPA(H)-DPP (58\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.12-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 14 \mathrm{H}), 4.20-3.60$ $(\mathrm{m}, 8 \mathrm{H}), 2.10-0.64(64 \mathrm{H})$; Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{92} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4}: \mathrm{C}, 76.32 ; \mathrm{H}, 7.01 ; \mathrm{O}, 4.84 ; \mathrm{S}, 9.70$. Found: C, 76.56; H, 7.12; O, 4.98; S, 9.92.

Polymerization for PBDTBPA(F)-DPP. Microwave-assisted Stille polymerization reaction conditions were employed to synthesize PBDTBPA(F)-DPP. The procedure for the synthesis of polymer PBDTBPA(F)-DPP is as follows: To a 10 mL microwave tube, monomer PBDTBPA(F) ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$), DPP ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(8 \mathrm{mg}, 2 \mathrm{~mole} \%)$, and (o-tolyl $)_{3} \mathrm{P}(18$ $\mathrm{mg}, 16 \mathrm{~mole} \%)$ were dissolved in anhydrous $\mathrm{CB}(5 \mathrm{~mL})$. The reaction mixture was purged with
N_{2} for 15 min . The microwave tube was placed in the reactor and heated to $120^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, the reaction mixture was poured into methanol to afford a precipitate, which was purified by Soxhlet extraction method using methanol, hexane and acetone, and then extracted in CF, which was evaporated to get PBDTBPA(F)-DPP (47\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 8.12-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 10 \mathrm{H}), 4.20-3.60(\mathrm{~m}, 8 \mathrm{H})$, 2.10-0.64 (64H); Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{88} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, 72.38; H, 6.36; O, 4.59; S, 9.20. Found: C, 72.18; H, 6.14; O, 4.72; S, 9.42.

gure S1. ${ }^{1} \mathrm{H}$ NMR of 2 and $\mathrm{BPA}(\mathrm{H})$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR of 3 and BDTBPA(H).

Figure S3. ${ }^{1} \mathrm{H}$ NMR of 4 and 5.

Figure S4. ${ }^{1} \mathrm{H}$ NMR of 6 and BPA(F).

Figure S5. ${ }^{1} \mathrm{H}$ NMR of 7 and BDTBPA(F).

Figure S6. ${ }^{1} \mathrm{H}$ NMR of PBDTBPA(H)-DPP and PBDTBPA(F)-DPP.

Sample :
Injection Date :
Calibration File: TEST-CAL.CAL
Calibration Date :

Baseline from :	6.103 min
Integration from:	6.103 min
MHK - A (Cal.):	$0.000000 \mathrm{E}+0$
Eluent:	$\ldots ?$
Concentration :	$1.000 \mathrm{~g} /$
Column 1:	$\ldots \ldots$
Detector 1:	RID A, Refractive Index Signal
Operator:	KRANTHI
rid1A	

Baseline to :	8.465 min
Integration to :	8.465 min
MHK - K (Cal.):	$1.000000 \mathrm{E}+0 \mathrm{ml} / \mathrm{g}$
Flowrate:	$1.000 \mathrm{ml} / \mathrm{min}$
Inject volume :	20.000 ul
Temperature :	23.000 C
Delay volume :	0.000 ml
Acquisition interval :	0.430 sec

Mn :	3.4830 e 4	g/mol
Mw :	7.1324 e4	g/mol
Mz :	1.4989e5	$\mathrm{g} / \mathrm{mol}$
Mv:	0.000000	$\mathrm{g} / \mathrm{mol}$
D :	2.0478 e 0	
[n]:	0.000000	ml / g
Vp:	7.4683e0	ml
Mp :	4.1557e4	$\mathrm{g} / \mathrm{mol}$
A:	5.7927 e 3	$\mathrm{ml}^{*} \mathrm{~V}$
10\%	1.6520e4	$\mathrm{g} / \mathrm{mol}$
30\%	2.8836 e 4	$\mathrm{g} / \mathrm{mol}$
60\%	5.8142 e 4	g/mol
85\%	1.2321e5	$\mathrm{g} / \mathrm{mol}$
90\%	1.5606 e 5	$\mathrm{g} / \mathrm{mol}$

Figure S7. GPC graph of PBDTBPA(H)-DPP.

Sample : Injection Date :		
Calibration File: TEST-CAL.CALCalibration Date:		
Baseline from:		6.782 min
Integration from:		6.782 min
MHK - A (Cal.):		$0.000000 \mathrm{E}+0$
Eluent :	?
Concentration :		$1.000 \mathrm{~g} /$
Column 1 :		...?
Detector 1 :		RID A, Refractive Index Signal
Opera	or:	KRANTHI
	rid1A	
Mn :	1.5930 e4	$\mathrm{g} / \mathrm{mol}$
Mw :	2.4270 e4	$\mathrm{g} / \mathrm{mol}$
Mz :	$3.6484 \mathrm{e4}$	$\mathrm{g} / \mathrm{mol}$
Mv:	0.000000	$\mathrm{g} / \mathrm{mol}$
D :	1.5235 e 0	
[n]:	0.000000	ml / g
V :	7.8912 eO	ml
Mp :	1.7601 e 4	$\mathrm{g} / \mathrm{mol}$
A :	2.4380 e 3	$\mathrm{ml}^{*} \mathrm{~V}$
10\%	8.1593 e 3	$\mathrm{g} / \mathrm{mol}$
30\%	1.3494 e 4	$\mathrm{g} / \mathrm{mol}$
60\%	2.2903 e4	$\mathrm{g} / \mathrm{mol}$
85\%	4.0041e4	$\mathrm{g} / \mathrm{mol}$
90\%	4.722004	$\mathrm{g} / \mathrm{mol}$

Baseline to :	8.671 min
Integration to :	8.671 min
MHK -K (Cal.):	$1.000000 \mathrm{E}+0 \mathrm{mV} / \mathrm{g}$
Flowrate :	$1.000 \mathrm{ml} / \mathrm{min}$
Inject volume :	20.000 ul
Temperature :	23.000 C
Delay volume :	0.000 ml
Acquisition interval :	0.430 sec

Figure S8. GPC graph of PBDTBPA(F)-DPP.

Figure S9. CV curves of PBDTBPA(H)-DPP and PBDTBPA(F)-DPP.

Figure S10. Current density-voltage $(J-V)$ and EQE curves of the IOSCs based on PBDTBPA(H)-DPP and PBDTBPA(F)-DPP at different ratios.

Figure S11. Dark current curves of IOSCs based on PBDTBPA(H)-DPP and PBDTBPA(F)-DPP.

Figure S12. AFM images of a) PBDTBPA(H)-DPP:PC ${ }_{71} \mathrm{BM}$ (1:1.5) and b) PBDTBPA(F)-DPP:PC ${ }_{71} \mathrm{BM}$ (1:1.5).

Figure S13. X-ray diffraction patterns of PBDTBPA(H)-DPP and PBDTBPA(F)-DPP.

Figure S14. Hole mobility of bare PBDTBPA(H)-DPP and PBDTBPA(F)-DPP.

Figure
S15. Impedance
curves of polymer: $\mathrm{PC}_{71} \mathrm{BM}$
at
the
blend
ratio
of
1:1.5.

Table S1. Photovoltaic Properties of BHJ OSCs of Polymer: $\mathrm{PC}_{71} \mathrm{BM}$ at the Blend Ratios of 1:0.7 and 1:2

polymer	polymer: $\mathrm{PC}_{71} \mathrm{BM}$	thickness	$J_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$V_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{FF}(\%)$	$\mathrm{PCE}^{a}(\%)$
PBDTBPA(H)-DPP	$1: 0.7$	100	7.34	0.71	32.58	1.69 ± 0.03
PBDTBPA(H)-DPP	$1: 2$	100	6.42	0.72	44.70	2.08 ± 0.10
PBDTBPA(F)-DPP	$1: 0.7$	100	6.03	0.67	31.48	1.27 ± 0.11
PBDTBPA(F)-DPP	$1: 2$	100	5.55	0.65	36.70	1.32 ± 0.20

${ }^{a} \mathrm{PCE}$ is average of 10 IOSCs.

Table S2. Hole and Electron Mobilities of Polymer: PC $_{71}$ BM at the Blend Ratio of 1:1.5 Under
Various Processing Conditions

polymer	processing condition	hole mobility $\left(\mu_{\mathrm{h},}, \mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	electron mobility $\left(\mu_{\mathrm{e}}, \mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	charge balance $(\mu \mathrm{h} / \mu \mathrm{e})$
PBDTBPA(H)-DPP	Pristine	1.04×10^{-5}	2.98×10^{-4}	0.03
PBDTBPA(H)-DPP	3% DIO	6.55×10^{-5}	3.01×10^{-4}	0.21
PBDTBPA(H)-DPP	methanol	1.76×10^{-4}	3.05×10^{-4}	0.58
PBDTBPA(F)-DPP	Pristine	8.25×10^{-6}	2.90×10^{-4}	0.02
PBDTBPA(F)-DPP	3% DIO	3.37×10^{-5}	2.95×10^{-4}	0.11
PBDTBPA(F)-DPP	methanol	7.44×10^{-5}	3.12×10^{-4}	0.23

1. Tang, A.; Li, L.; Lu, Z.; Huang, J.; Jia, H.; Zhan, C.; Tan, Z.; Li, Y.; Yao, J. J. Mater. Chem. A., 2013, 1, 5747.
