Supporting Information

A biodegradable and fluorescent nanovehicle with enhanced selective uptake by tumor cells

Jinxia An,^a Xiaomei Dai, ^a Yu Zhao, ^a Qianqian Guo, ^a Zhongming Wu, ^b Xinge Zhang, ^{a,*} Chaoxing Li ^{a,*}

^a Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China

^b 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, The Ministry of Health Key Laboratory of Hormone and Development, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China

Fig. S1. ¹H NMR spectrum of AcDAGEA in CDCl₃ at 25 °C.

Fig. S2. XPS survey scan of pAcDAGEA/pPEGA-*b*-p(DMDEA-*co*-BADS).

Fig. S3. ¹H NMR spectrum of LA-pDAGEA/pPEGA-*b*-p(DMDEA-*co*-BADS) in DMSO-*d*₆ at

Fig. S4. The DLS histogram of (A) LA-Np1, (B) LA-Np2 and (C) LA-Np3.

Fig. S5 Nanoparticle stability following incubation with 90% fetal bovine serum.

Fig. S6 Hydrodynamic diameter versus degradation time plots of 0.5 mg/mL of LA-Np2 in pH 7.4 PBS with 5 and 20 mM DTT, respectively.

Fig. S7. The microscope images of NIH3T3 cells after 48 h of incubation with (A) the control, (B) DOX@Np2, (C) DOX@LA-Np2, (D) free DOX; and HepG2 cells after 48 h of incubation with (E) the control, (F) DOX@Np2, (G) DOX@LA-Np2, (H) free DOX at 20 ug/mL of DOX.

Table S1. Characterization and properties of the polymers

Samples	theoretical M_n (kDa) ^a	measured M_n (kDa) ^b	$M_{ m w}/M_{ m n}^{ m b}$
pAcDAGEA	6.0	5.2	1.15
pPEGA	7.2	6.5	1.17

^a Theoretical M_n based on MW of monomer $\times [M]_0/[CTA_{BODIPY}]_0$. ^b Measured

by GPC using polystyrene as a standard in tetrahydrofuran.

Samples	$D_{H^{a}}(\mathbf{nm})$	PDI ^a	Zeta potential ^a (mV)
DOX@LA-Np1	112.6 ± 4.2	0.19 ± 0.02	-5.3 ± 0.6
DOX@LA-Np2	178.5 ± 2.9	0.21 ± 0.03	-4.7 ± 0.7
DOX@LA-Np3	132.7 ± 5.1	0.22 ± 0.01	-5.3 ± 0.4

Table S2. Characterization and properties of the nanoparticles

^a Hydrodynamic parameters of nanoparticles in PBS were measured by DLS at 25°C.

Table S3. Drug release kinetic obtained from DOX release data^a

Conditions for drug release	п	k	R ²	transport mechanism
pH 7.4	0.1058	12.39	0.9488	diffusion controlled
pH 5.4	0.1088	12.29	0.9641	diffusion controlled
pH 7.4 with DTT	0.3912	15.26	0.9754	diffusion controlled
pH 5.4 with DTT	0.3966	20.48	0.9557	diffusion controlled