Supplementary Information

L. Kaßner^a, K. Nagel^a, R.–E. Grützner^b, M. Korb^c, T. Rüffer^c, H. Lang^c and S. Spange^a

a Polymer Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany.

b BASF SE, Carl-Bosch-Str. 38, 67063 Ludwigshafen am Rhein, Germany.

c Inorganic Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany; pertaining single X-ray structure analysis.

Table S1 Elemental analysis and portion of extractables (48 h, MeOH) of composite **P2** repeated for nine times; Remainder% = 100 % - C% - N% - H%.

Sample	Extractables	Quantitative elemental analysis						
	(48 h MeOH)	C%	C% H%		Remainder%			
P2 (1)	15 %	61.0	9.53	11.7	17.8			
P2 (2)	13 %	61.0	9.56	11.8	17.6			
P2 (3)	14 %	61.4	9.62	11.9	17.1			
P2 (4)	16 %	61.2	9.60	11.8	17.4			
P2 (5)	14 %	60.9	9.44	11.7	18.0			
P2 (6)	17 %	61.2	9.55	11.7	17.6			
P2 (7)	-	61.8	9.67	11.9	16.6			
P2 (8)	-	61.6	9.61	11.8	17.0			
P2 (9)	-	60.2	9.39	11.6	18.8			
	calculated	61.7 %	9.62 %	12.0 %	16.7 %			

Table S2 Data acquisition details for the	ne single X–ray diffraction analyses of S	i(ε-CL) ₄ 1 and Si(CHO) ₄ 2
naramotor		Value

_

parameter	Value					
	Si(ε-CL) ₄ 1	Si(CHO) ₄ 2				
CCDC	1058156	1058182				
empiric formula	$C_{24}H_{40}N_4O_4Si$	$C_{24}H_{40}N_4O_4Si$				
molecular weight	476.69	476.69				
temperature	110 K	110 К				
wavelength	0.71073 Å	0.71073 Å				
crystal system, space group	orthorhombic, P n a 21	Tetragonal, I-42d				
dimension of unit cell	a = 18.1083(7) Å; α = 90 deg.	a = 13.9688(3) Å; α = 90 deg.				
	b = 17.6737(9) Å; β = 90 deg.	b = 13.9688(3) Å; β = 90 deg.				
	c = 7.6710(3) Å; γ = 90 deg.	c = 13.3347(4) Å; γ = 90 deg.				
volume	2455.03(18) Å ³	2601.97(11) Å ³				
Calculated density	1.290 mg/cm ³	1.217 g/cm ³				
Absorption coefficient	0.133 mm ⁻¹	0.126 mm ⁻¹				
F(000)	1032	1032				
Crystal size	0.4 x 0.4 x 0.2 mm	0.5 x 0.5 x 0.4 mm				
Theta–angle for data acquisition	2.895 to 25.495	3.60 to 25.00				
Limiting indices	–21≤h≤21, –20≤k≤21, –9≤l≤8	–15≤h≤16, –16≤k≤16, –15≤l≤15				
Reflections collected/unique	10195 / 4209 [R(int) = 0.0477]	3191 / 1107 [R(int) = 0.0215]				
Completeness of theta = 25.500	99.6 %	99.2 %				
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents				
Max. and min. transmission	1.00000 and 0.55157	1.00000 and 0.88537				
Refinement method	Full–matrix least squares on F ²	Full–matrix least squares on F ²				
Data/restraints/parameters	4209 / 1 / 298	1107 / 0 / 75				
Goodness–of–fit	1.044	1.040				
Final R indices [I>2sigma(I)]	R1 = 0.0562, wR2 = 0.1307	R1 = 0.0263, wR2 = 0.0621				
R indices (all data)	R1 = 0.0705, wR2 = 0.1384	R1 = 0.0282, wR2 = 0.0632				
Absolute structure parameter	-0.05 (12)	-0.22 (16)				
Largest diff. peak and hole	0.683 and –0.262 e.A ⁻³	0.131 and –0.172 e.A ⁻³				

Table S3 Measured	bond le	ngths and	angles ir	າ Si(ε-CL)₄	, 1
bond lengths in Å					

-

Si(1)-N(1)	1.759(4)	Si(1)-N(2)	1.755(4)	Si(1)-N(3)	1.758(4)
Si(1)–N(4)	1.760(4)	C(1)-O(1)	1.238(5)	C(1)-N(1)	1.374(5)
C(1)-C(2)	1.507(6)	C(2)–C(3)	1.541(6)	C(3)–C(4)	1.519(6)
C(4)-C(5)	1.540(6)	C(5)–C(6)	1.517(6)	C(6)–N(1)	1.517(6)
C(7)–O(2)	1.227(5)	C(7)–O(2)	1.368(6)	C(7)–C(8)	1.512(6)
C(8)–C(9)	1.534(6)	C(9)–C(10)	1.525(6)	C(10)-C(11)	1.508(7)
C(11)-C(12)	1.521(6)	C(12)-N(2)	1.475(5)	C(13)–O(3)	1.229(5)
C(13)–N(3)	1.373(6)	C(13)–C(14)	1.501(6)	C(14)–C(15)	1.527(6)
C(15)-C(16)	1.517(6)	C(16)–C(17)	1.523(6)	C(17)–C(18)	1.516(6)
C(18)–N(3)	1.475(5)	C(19)–O(4)	1.231(5)	C(19)–N(4)	1.362(6)
C(19)-C(20)	1.505(6)	C(20)–C(21)	1.547(6)	C(21)-C(22)	1.523(6)
C(22)–C(23)	1.522(7)	C(23)–C(24)	1.508(6)	C(24)–N(4)	1.475(5)
bond angels in °					
O(1)-C(1)-N(1)	119.3(4)	O(1)-C(1)-C(2)	121.3(4)	N(1)-C(1)-C(2)	119.3(4)
C(1)-C(2)-C(3)	113.2(4)	C(4)–C(3)–C(2)	113.8(4)	C(3)-C(4)-C(5)	114.7(4)
C(6)-C(5)-C(4)	114.5(4)	N(1)-C(6)-C(5)	115.8(4)	O(2)-C(7)-N(2)	120.2(4)
O(2)-C(7)-C(8)	120.5(4)	N(2)–C(7)–C(8)	119.2(4)	C(7)–C(8)–C(9)	112.7(4)
C(10)-C(9)-C(8)	114.6(4)	C(11)-C(10)-C(9)	115.9(4)	C(10)-C(11)-C(12)	115.0(4)
N(2)-C(12)-C(11)	114.3(4)	O(3)-C(13)-N(3)	119.3(4)	O(3)-C(13)-C(14)	121.3(4)
N(3)-C(13)-C(14)	119.3(4)	C(13)-C(14)-C(15)	114.1(4)	C(16)–C(15)–C(14)	114.6(4)
C(15)-C(16)-C(17)	115.7(4)	C(18)–C(17)–C(16)	114.6(4)	N(3)-C(18)-C(17)	115.3(3)
O(4)-C(19)-N(4)	119.5(4)	O(4)-C(19)-C(20)	120.8(4)	N(4)-C(19)-C(20)	119.6(4)
C(19)-C(20)-C(21)	112.5(4)	C(22)-C(21)-C(20)	113.5(4)	C(23)–C(22)–C(21)	114.6(4)
C(24)-C(23)-C(22)	115.8(4)	N(4)-C(24)-C(23)	114.9(4)	C(1)-N(1)-C(6)	120.9(4)
C(1)-N(1)-Si(1)	114.8(3)	C(6)–N(1)–Si(1)	122.9(3)	C(7)–N(2)–C(12)	120.7(4)
C(7)–N(2)–Si(1)	114.6(3)	C(12)–N(2)–Si(1)	123.3(3)	C(13)–N(3)–C(18)	120.9(4)
C(13)–N(3)–Si(1)	114.9(3)	C(18)–N(3)–Si(1)	123.3(3)	C(19)–N(4)–C(24)	120.5(4)
C(19)–N(4)–Si(1)	114.9(3)	C(24)–N(4)–Si(1)	123.4(3)	N(2)-Si(1)-N(3)	109.92(16)
N(2)-Si(1)-N(1)	110.08(18)	N(3)-Si(1)-N(1)	108.24(19)	N(2)-Si(1)-N(4)	107.84(19)
N(3)–Si(1)–N(4)	110.28(17)	N(1)-Si(1)-N(4)	110.49(16)		

Table S4 Measured bond lengths and angles in Si(CHO)₄ 2.									
	bond lengths in Å		bond angels in °						
Si(1)=O(1)	1 6353(10)	(1)#1_Si(1)_O(1)#2	108 93(3)						
$\Omega(1) = O(1)$	1.0555(10)	(1)#1=3i(1)=0(1)#2 O(1)#1=5i(1)=O(1)#3	110 56(7)						
N(2) = C(1)	1 275(2)	O(1)#2-Si(1)-O(1)#3	108 93(3)						
C(6) = C(1)	1.273(2)	O(1)#1-Si(1)-O(1)	108.93(3)						
C(6) - C(5)	1,430(2)	O(1)#2-Si(1)-O(1)	110 56(7)						
$C(6) = H(6\Delta)$	0.9700	O(1)#2-Si(1)-O(1)	108 93(3)						
C(6)-H(6B)	0.9700	N(2) = O(1) = Si(1)	107 59(8)						
C(2) - C(1)	1 504(2)	C(1) = N(2) = O(1)	111 64(12)						
C(2) - C(3)	1.501(2)	C(1) - C(6) - C(5)	110.78(14)						
$C(2) = H(2\Delta)$	0.9700	$C(1) - C(6) - H(6\Delta)$	109 5						
C(2) = H(2R)	0.9700	C(5) - C(6) - H(6A)	109.5						
C(4) = C(3)	1 523(3)	C(1) - C(6) - H(6R)	109.5						
C(4) - C(5)	1 523(3)	C(5) - C(6) - H(6B)	109.5						
C(4) = H(4A)	0.9700	H(6A) - C(6) - H(6B)	108.1						
C(4) - H(4B)	0.9700	C(1) - C(2) - C(3)	111.70(14)						
C(3)-H(3A)	0.9700	C(1) - C(2) - H(2A)	109.3						
C(3)-H(3B)	0.9700	C(3)-C(2)-H(2A)	109.3						
C(5)-H(5A)	0.9700	C(1)-C(2)-H(2B)	109.3						
C(5)-H(5B)	0.9700	C(3)-C(2)-H(2B)	109.3						
-(-)		H(2A) - C(2) - H(2B)	107.9						
		N(2) - C(1) - C(6)	127.79(13)						
		N(2)-C(1)-C(2)	115.17(13)						
		C(6) - C(1) - C(2)	117.04(12)						
		C(3)-C(4)-C(5)	110.58(15)						
		C(3)-C(4)-H(4A)	109.5						
		C(5)-C(4)-H(4A)	109.5						
		C(3)-C(4)-H(4B)	109.5						
		C(5)-C(4)-H(4B)	109.5						
		H(4A)-C(4)-H(4B)	108.1						
		C(4)-C(3)-C(2)	110.23(14)						
		C(4)-C(3)-H(3A)	109.6						
		C(2)-C(3)-H(3A)	109.6						
		C(4)-C(3)-H(3B)	109.6						
		C(2)-C(3)-H(3B)	109.6						
		H(3A)-C(3)-H(3B)	108.1						
		C(4)–C(5)–C(6)	111.51(14)						
		C(4)–C(5)–H(5A)	109.3						
		C(6)–C(5)–H(5A)	109.3						
		C(4)–C(5)–H(5B)	109.3						
		C(6)–C(5)–H(5B)	109.3						
		H(5A)–C(5)–H(5B)	108.0						

Fig. S3 solid state and solution NMR spectra of monomer ${\bf 1}$

Table S5 Polymerization reactions with $Si(CHO)_4$ as twin monomer with molar ratios of reactants, reaction conditions and observations.

antoly at	Molar	ratios of react	ants	Depation conditions	Decult	Extractables
Catalyst	<i>ε</i> -ACA Si(CHO)₄ <i>ε</i> -CL		Reaction conditions	Result	(EtOH)	
_	9	1	-	2.5 h, 100 °C	No reaction	-
-	4	1	0	2.5 h, 220 °C	PA6, &-CL, CHO and cyclohexanone detectable	36 %
50 μL HCl	-	1	42	4 h, 230 °C	PA6 and <i>ɛ</i> -CL detectable 15 % in water insoluble residue	_
50 μL HCl	42	1	-	4 h, 230 °C	PA6, E-CL and CHO detectable	23 %
50 μL CF₃COOH	-	1	42	4 h, 230 °C	No reaction	-
50 μL HCl	8	1	-	1 h, 230 °C	PA6, <i>ɛ</i> -CL and CHO detectable	39 %
$10 \ \mu L \ H_2 SO_4$	6.5	1	-	30 min 200 °C, 10 min 220 °C	PA6, &-CL and CHO detectable	_

CHO – cyclohexanone oxime; &-CL - &-caprolactam

At high temperatures above 220 °C under usage of ε -ACA PA6 as well as ε -CL formation is detected, but both products were formed by ε -Aminocaproic acid monomers. Therefore high extractables from hydrolysed Si(CHO)₄ respectively formation of cyclohexanone oxime (CHO) were observed.

Table S6 Experimental conditions and molar ratios of the tests under usage of water in comparison to the reference experiment with ε -ACA as water source.

		Molar ratio	os of reactants		Departies conditions	Disture	Extractables	Observation
sample	H ₂ O	<i>€</i> -ACA	Si(<i>ɛ</i> -CL)₄	<i>€</i> -CL	- Reaction conditions	Picture	(48 h, MeOH)	Observation
Reference PA6, &ACA as water source	-	1	_	4.4	3 h, 230 °C, 8 bar	A COLOR	10.0 %	PA6
PA6, use of water	1	-	-	11.8	4 h, 230 °C, 2 bar		19.0 %	PA6, discoloration
PA6/SiO ₂ hybrid material, use of water	6.6	-	1	21.1	Precondensation of &CL + H ₂ O; 2 h, 230 °C; 2.5 bar Further reaction with Si(&CL)₄, 2 h, 230 °C		25.4 %	PA6, high extractables, discoloration
PA6/SiO ₂ /MeSiO _{1.5} hybrid material, use of water	4.4	1.2	1.9	41	Addition of a second silicon monomer (1 equivalent); Premelting of ε -CL and silicon monomers, 1 h, 230 °C; Addition of ε -ACA/H ₂ O mixture, 3 h, 220 °C, 1 bar		99.1 %	No reaction, high extractables, discoloration
PA6/SiO ₂ hybrid material, use of water	4	_	1	22	3.5 h, 230 °C, 8 bar		-	No polymeric material obtained, IR: weak Amid II- signal at 1543 cm ⁻¹

Mola	ar ratios of read	tants	- Beastion conditions and order of reactant addition	Extractables	
<i>ɛ</i> -ACA	Si(&-CL)4	<i>ɛ</i> -CL	- Reaction conditions and order of reactant addition	(8 h H ₂ O, 8 h EtOH)	
4.0	1	21.1	ε-CL+ε-ACA 140 °C Si(ε-CL) ₄ 1.5 h, 180 °C 2.5 h, 220 °C, 7.5 bar	12.6 %	
4.1	1	21.1	\$\varepsilon\$-CL+\$\varepsilon\$-ACA 180 °C \$Si(\varepsilon\$-CL)_4 2 h, 220 °C, bar 1 h, 220 °C 1 h, 180 °C, 8 bar bar	8 0.7 %	
4.0	1	21.0	ε-CL+ε-ACA Si(ε-CL) ₄ 1 h, 220 °C 3 h, 230 °C	6.1 %	
4.0	1	11.3	ɛ-CL+ɛ-ACA, 2 h, 200 °C, 10 bar 3 h,	21.2.0/	
4.0	1	+9.9	ε–CL+Si(ε-CL) ₄ , 1 h, 110 °C	31.3 %	
4.0	1	21.1	ε-CL+ε-ACA+Si(ε-CL) ₄ 3 h, 230 °C	6.6 %	

Table S7 Molar ratios of reactants and portion of extractables of polymerization procedures under variation of the order of reactant addition respectively prepolymerization temperatures.

Fig. S4 Electron microscopic images and EDX patterns of composite P1_1 with 1 wt% of SiO₂ in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen.

Fig. S5 Electron microscopic images and EDX patterns of composite $P1_2$ with 1 wt% of SiO₂ in different magnifications; EDX showing the distribution of the element silicon.

Fig. S6 Electron microscopic images and EDX patterns of composite P1_3 with 1 wt% of SiO_2 in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen.

Fig. 57 Electron microscopic images and EDX patterns of composite P2 with 2 wt% of SiO_2 in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen.

Fig.. S8 Electron microscopic images and EDX patterns of composite $P5_1$ with 5 wt% of SiO₂ in different magnifications; EDX showing the distribution of the element silicon, carbon, nitrogen and oxygen.

Fig. S9 Electron microscopic images and EDX patterns of composite $P5_2$ with 5 wt% of SiO₂ in different magnifications; EDX showing the distribution of the element silicon and carbon.

		1. heating			crystallization			2. heating				
Sample	SiO ₂	Int. [J∙g ⁻¹]	Onset [°C]	Peak [°C]	Int. [J·g ⁻¹]	Onset [°C]	Peak [°C]	Int. [J·g ⁻¹]	Onset [°C]	Peak 1 [°C]	Peak 2 [°C]	a ₁-₃
R	0 wt%	83.7	213.0	220.5	-65.1	190.7	185.1	82.7	211.8	-	220.5	36.0
P1_1	1 wt%	89.6	211.7	220.9	-68.2	188.7	184.2	55.3	211.2	210.8	219.7	24.3
P2	2 wt%	84.4	211.4	219.5	-64.3	190.8	187.3	84.9	210.8	211.4	219.0	37.7
P5_1	5 wt%	77.1	211.5	219.0	-56.7	187.4	179.4	67.7	211.1	-	220.0	31.0

References

- 1 M. Schubnell, *UserCom*, 2001, **1**, 12–13.
- 2 G. W. Ehrenstein, *Polymer Werkstoffe*, Carl Hanser Verlag GmbH & Co. KG, 3. Auflage, 2011.
- 3 G. Rusu, E. Rusu, *High Perform. Polym.*, 2006, **18**, 355–375.

Fig. S10 TGA curves for samples with 1, 2 and 5 weight% SiO₂ (P1_1, P2 and P5_1) in comparison to polyamide 6 (R).

Fig. S11 SEC profiles of composite material **P1_x** with 1 weight% SiO₂, **P2** with 2 wt% of SiO₂ and **P5_x** with 5 weight% SiO₂ in comparison to the PA6 as reference; extracted samples (48 h, MeOH); normalized to peak height.