SUPPORTING INFORMATION

Polyanhydride Nanoparticles by 'Click' Thiol-Ene Polymerization

Katie L. Poetz,^a Olivia Z Durham^a and Devon A. Shipp^{*a,b}

^a Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam NY 13699-5810, U.S.A. Email: <u>dshipp@clarkson.edu</u>. Tel. +1-315-268-2393.
^b Center for Advanced Materials Processing, Clarkson University, Potsdam NY 13699-5810, U.S.A.

Figure SI-1. GPC traces of PA and PA degradation (in 3:1 THF:water) degradation of PA. (a) t = 0 ($M_n = 12,600$, D = 2.23), (b) t = 30 min. ($M_n = 2,200$, D = 2.42), (c) t = 60 min. ($M_n = 1,300$, D = 2.03).

Figure SI-2. GPC traces of PA prepolymer (t=0 hrs, $M_n = 8,400$, $\mathcal{D} = 2.48$) and PA particles as a function of degradation time at 37°C in PBS solution. Also shown is the GPC trace of the model degradation product (Scheme 1 (1)).

Figure SI-3. ¹H NMR spectra (CDCl₃) of PA particles as a function of degradation time in PBS solution at 37°C. Peak at ~2.4 ppm due the proton α to the carboxylic acid is indicated by the arrow.

Figure SI-4. First-order plots of the integrations of peaks at ~2.4 ppm (due to proton α to the carboxylic acid) from ¹H NMR spectra (CDCl₃) of PA particles as a function of degradation time in water at 37°C.

Figure SI-5. DLS curves of PA nanoparticles ($M_n = 8,400$, $\mathcal{D} = 2.48$) and PA nanoparticles as a function of degradation time at 37°C in (a) water and (b) PBS solution.