Supporting Information

High-Efficiency Fluorescent Polyimides Based on Locally Excited Triarylaminecontaining Dianhydride Moieties

By Jia-Hao Wu and Guey-Sheng Liou*

Functional Polymeric Materials Laboratory, Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan Tel: +886-2-336-5315; Fax: +886-2-336-5237; E-mail: <u>gsliou@ntu.edu.tw</u>

List of Contents for Supplementary Materials:

Figure S1. NMR spectra of M-Ph in CDCl ₃	<u>SI-2</u>
Figure S2. NMR spectra of M-Np in CDCl ₃	<u>SI-3</u>
Figure S3. NMR spectra of M-Py in CDCl ₃	<u>SI-4</u>
Figure S4. NMR spectra of M-Ph' in CDCl ₃	<u>SI-5</u>
Figure S5. FTIR spectra of the model compounds	<u>SI-6</u>
Figure S6. NMR spectra of the polyimides in CDCl ₃	<u>SI-7</u>
Figure S7. FTIR spectra of the polyimides	<u>SI-8</u>
Figure S8. TGA thermograms of the polyimides	<u>SI-9</u>
Figure S9. TMA thermograms of the polyimides	<u>SI-10</u>
Figure S10. PL behavior of M-Ph in different solvents	<u>SI-11</u>
Figure S11. PL behavior of M-Np in different solvents	<u>SI-12</u>
Figure S12. PL behavior of M-Py in different solvents	<u>SI-13</u>
Table S1. Inherent viscosity and molecular weight of the polyimides	<u>SI-14</u>
Table S2. Solubility behavior of the polyimides	<u>SI-15</u>
Table S3. Thermal properties of the polyimides	<u>SI-16</u>
Table S4. TD-DFT calculation data of the model compounds	<u>SI-17</u>
Table S5. Photophysical properties of M-Ph in different solvents (10 μ M)	<u>SI-18</u>
Table S6. Photophysical properties of M-Np in different solvents (10 μ M)	<u>SI-19</u>
Table S7. Photophysical properties of M-Py in different solvents $(10 \ \mu M)$	<u>SI-20</u>
Table S8. Optical properties of the polyimides in NMP-MeOH with different methanol	
fraction	<u>SI-21</u>

Scheme S1. NMR spectra of M-Ph in CDCl₃.

Figure S3. NMR spectra of M-Py in CDCl₃.

Figure S5. FTIR spectra of the model compounds.

Figure S7. FTIR spectra of the polyimides.

Figure S8. TGA thermograms of the polyimides.

Figure S9. TMA thermograms of the polyimides.

Figure S10. PL spectra and quantum efficiency of the model compound M-Ph in different solvents excited at abs_{max} (solution concentration 10 μ M). Photographs were taken under illumination at 365 nm.

Figure S11. PL spectra and quantum efficiency of the model compound M-Np in different solvents excited at abs_{max} (solution concentration 10 μ M). Photographs were taken under illumination at 365 nm.

Figure S11. PL spectra and quantum efficiency of the model compound M-Py in different solvents excited at abs_{max} (solution concentration 10 μ M). Photographs were taken under illumination at 365 nm.

Polymer	$\eta_{inh} (dL/g)^a$	Mn ^c	Mw ^c	PDI^d
Ph-DCHPI	1.53 ^b	-	-	-
Np-DCHPI	1.17	67900	142200	2.09
Py-DCHPI	0.54	19900	45000	2.26

Table S1. Inherent viscosity and molecular weight of the polyimides

 $^{a}\eta_{inh}$ (dL/g) measured at polymer concentration of 0.5 g/dL in NMP at 30°C.

 $^{\textit{b}}\,\eta_{inh}\,(dL/g)$ measured at polymer concentration of 0.5 g/dL in H_2SO_4 at 30°C.

^c Calibrated with polystyrene standards, using NMP as the eluent at a constant flow rate of 0.5 ml/min at 40 $^{\circ}$ C.

^{*d*} Polydispersity Index (M_w/M_n) .

Polymer	Solubility in various Solvent							
i orymer	NMP	DMAc	DMF	<i>m</i> -Cresol	THF	CHCl ₃	Toluene	
Ph-DCHPI	+-	+-	—	++	+	++	+ -	
Np-DCHPI	++	+	+ -	++	++	++	+ -	
Py-DCHPI	++	+-	_	++	+	++	_	

 Table S2. Solubility behavior of the polyimides.

Qualitative solubility was tested with 5 mg of a sample in 1 mL of solvent. + +, soluble at room temperature; +, soluble on heating; + –, partially soluble or swelling; –, insoluble even on heating.

		$T_{\rm d}{}^5$ [$T_{d}^{5} [^{\mathrm{o}}\mathrm{C}]^{c}$		$[^{\circ}C]^{c}$	- D [0/1d
Polymer ^a	$I_{g} [{}^{b}C]^{b}$	N_2	Air	N_2	Air	$R_{ m w800}$ [%] ^{<i>u</i>}
Ph-DCHPI	340	475	430	485	445	5
Np-DCHPI	362	475	440	485	470	7
Py-DCHPI	386	475	475	485	490	16

Table S3. Thermal properties of the polyimides.

^a The polymer samples were heated at 300 °C for 1 h prior to all the thermal analyses.

^b Glass transition temperature measured by TMA with a constant applied load of 5 mN at a heating rate of 10 °C/min by film/fiber probe in nitrogen.

^c Temperature at which 5 % and 10 % weight loss occurred, respectively, recorded by TGA at a heating rate of 20 °C/min and a gas flow rate of 60 cm³/min.

^d Residual weight percentages at 800 °C under nitrogen flow.

Code	State	Transition Wavelength (nm)	Oscillator Strength	Orbitls	Character of Transition	Contribution
M-Ph'	S 1	329.2	0.5896	LE(π–π*)	HOMO→LUMO	0.99
	S2	318.1	0.0188	CT(π–π*)	HOMO→LUMO+1	0.08
				CT(π–π*)	HOMO→LUMO+2	0.06
				$LE(\pi-\pi*)$	HOMO→LUMO+4	0.82
	S3	312.9	0.3001	$LE(\pi-\pi*)$	HOMO→LUMO+3	0.97
M-Ph M-Np	S1 S1	413.8 409.5	0.3038 0.2341	LE(π–π*) LE(π–π*)	HOMO→LUMO HOMO→LUMO	0.98 0.98
M-Py	S1 S2	432.0 407.3	0.1489 0.2911	LE(π–π*) LE(π–π*)	HOMO→LUMO HOMO- 1→LUMO+2	0.98 0.06
				LE(π–π*) LE(π–π*)	HOMO→LUMO+2 HOMO→LUMO+3	0.89 0.03

Table S4. Transition wavelengths, oscillator strengths, and the assignment of $S_0 \rightarrow S_i$ transitions of the model compounds.

Solvent	- 4	1 abs ()	$\lambda_{\rm max}^{\rm em}$ Φ (%)	መ (%)¢	CIE 1931 coordinates		
	£"	$\lambda_{\max}^{uos}(\min)$	$(nm)^b$	$\Psi_{\text{PL}}(70)$	x	У	
Cyclohexane	2.0	395	433	36.0	0.1530	0.0463	
Ethyl ether	4.3	394	466	36.0	0.1432	0.1852	
CHCl ₃	4.8	409	507	33.8	0.2138	0.4910	
EA	6.0	399	500	22.3	0.2003	0.4357	
THF	7.6	401	497	31.8	0.1823	0.4060	
CH_2Cl_2	8.9	407	514	25.0	0.2448	0.5200	
NMP	32.2	406	534	2.2	0.3274	0.5352	
MeCN	37.5	402	544	1.1	0.3576	0.5274	
DMSO	46.7	408	551	0.7	0.3691	0.4957	

Table S5. Photophysical properties of model compound M-Ph in different solvents.

^{*a*} Dielectic constant of the solvents.

^{*b*} Excited at λ_{max}^{abs} .

^{*c*} The quantum yield was measured by using quinine sulfate (dissolved in 1 N H_2SO_4 with a concentration of 10µM, assuming photoluminescence quantum efficiency of 0.546) as a standard at 25°C.

Solvent	o ^d) abs (nm)	λ_{\max}^{em} (nm) ^b	ው (%) [¢] -	CIE 1931 coordinates	
Solvent	ε	λ_{\max}^{auss} (nm)		Ψ _{PL} (70)	x	У
Cyclohexane	2.0	388	436	33.4	0.1523	0.0508
Ethyl ether	4.3	390	472	18.0	0.1513	0.2110
CHCl ₃	4.8	403	511	7.2	0.2474	0.4974
EA	6.0	394	501	5.9	0.2092	0.4126
THF	7.6	393	498	10.1	0.1983	0.4011
CH_2Cl_2	8.9	400	520	3.4	0.2744	0.5109
NMP	32.2	402	526	0.7	0.2930	0.4560
MeCN	37.5	396	544	0.3	0.3260	0.4166
DMSO	46.7	401	547	0.4	0.3252	0.4279

Table S6. Photophysical properties of model compound M-Np in different solvents.

^{*a*} Dielectic constant of the solvents.

^{*b*} Excited at λ_{max}^{abs} .

^{*c*} The quantum yield was measured by using quinine sulfate (dissolved in 1 N H_2SO_4 with a concentration of 10 μ M, assuming photoluminescence quantum efficiency of 0.546) as a standard at 25°C.

Solvent	29	λ abs (mass)	λ_{max}^{em}		CIE 1931 coordinates	
Solvent	£"	λ_{\max}^{auss} (nm)	$(nm)^b$	Φ _{PL} (70)	x	У
Cyclohexane	2.0	378	461	25.7	0.1436	0.1593
Ethyl ether	4.3	374	512	3.1	0.2576	0.4984
CHCl ₃	4.8	377	563	0.2	0.3609	0.4345
EA	6.0	377	544	0.4	0.347	0.4949
THF	7.6	379	541	0.7	0.352	0.5238
CH_2Cl_2	8.9	380	564	0.1	0.3462	0.3822
NMP	32.2	376	560	0.2	0.2934	0.3274
MeCN	37.5	375	566	0.1	0.3022	0.3031
DMSO	46.7	379	561	0.1	0.3204	0.3398

Table S7. Photophysical properties of model compound M-Py in different solvents.

^{*a*} Dielectic constant of the solvents.

^{*b*} Excited at λ_{max}^{abs} .

^{*c*} The quantum yield was measured by using quinine sulfate (dissolved in 1 N H_2SO_4 with a concentration of 10 μ M, assuming photoluminescence quantum efficiency of 0.546) as a standard at 25°C.

Polymer	f $[v^{0/a}]^{a}$	λ ^{abs} [nm]	λ ^{em} [nm]	Ф ът [%]	CIE 1931 coordinates	
rorymer	ΙΨͺͺͺͺͺ	N _{max} [IIII]	n_{max} [IIII]	ΦΡ[[/0] -	Х	у
	0	407	527	5.2	0.2970	0.5226
	30	410	517	7.9	0.2733	0.5253
Ph-DCHPI	50	408	520	5.9	0.2835	0.5288
	70	410	527	4.2	0.2997	0.5343
	90	406	531	3.1	0.3121	0.5361
	0	402	523	1.7	0.2874	0.4785
	30	402	512	5.9	0.2462	0.4778
Np-DCHPI	50	401	514	4.7	0.2572	0.4894
	70	401	517	3.5	0.2690	0.4974
	90	402	522	2.4	0.2827	0.4989
	0	378	553	0.3	0.3087	0.3587
	30	378	528	1.7	0.3248	0.5117
Py-DCHPI	50	377	526	1.3	0.3266	0.4946
	70	376	531	1.1	0.3351	0.4887
	90	378	545	0.8	0.3401	0.4710

 Table S8. Optical properties of the polyimides in NMP-MeOH with different methanol fraction.

^{*a*} Polymer concentration is 10 μ M with different MeOH fraction.