Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

The Effect of Molecular Geometry on the

Polymer/Fullerene Ratio in Polymer Solar Cells

Jianyu Yuan, Yu Liu, Huilong Dong, Xiaobo Shi, Zeke Liu, Youyong Li and Wanli Ma*[†]

[†] Institute of Functional Nano & Soft Materials (*FUNSOM*), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University,199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China.

E-mail: wlma@suda.edu.cn

Table of Contents

1. ¹ H NMR Charts of PTP8 and PTN8	S2
2. Optimized molecular orbital surfaces of the LUMO and HOMO of PTP8 and PTN8.	S3
3. Additional AFM images of PTP8 and PTN8 based blend	S4

Figure S1 400 MHz ¹H NMR spectra of polymer PTP8 in CDCl₃

Figure S2 400 MHz ¹H NMR spectra of polymer PTN8 in CDCl₃.

Figure S3 Optimized molecular orbital surfaces of the LUMO and HOMO of PTP8, PTN8 and PTN8'

Fig. S4 AFM images of **PTP8** and **PTN8** based blend cast from chloroform w/wo DIO (polymer/fullerene weight ratio 1/0.5).

Fig. S5 a-d) TEM and HAADF-STEM images of **PTP8** and **PTN8** based blends under the same processing conditions (with 0.5% DIO, D/A weight ratio 1/0.5).

Table S1 Optimized devices performance of PTP8:PC₇₁BM blends with varying D/A blend weight ratios.

D/A Ratio w/w	V _{oc} (V)	$J_{\rm sc}$ [mA/cm ²]	FF (%)	PCE (%)
1:1.0	0.93	10.50	55.7	5.44
1:0.8	0.96	11.00	58.5	6.18
1:0.6	0.97	10.32	57.6	5.77
1:0.5	0.98	10.51	58.1	5.98
1:0.3	1.00	8.42	48.0	4.04