Supporting Information

Designed Enzymatically Degradable Amphiphilic Conetworks by Radical Ring-Opening Polymerization

Yinfeng Shi, Holger Schmalz, Seema Agarwal*

Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
*Corresponding author: Seema Agarwal

E-mail address: agarwal@uni-bayreuth.de

Homopolymerization behavior of VCP

The homopolymerization behavior of the monomer VCP under radical ring-opening polymerization condition at $120{ }^{\circ} \mathrm{C}$ was studied. After purification, the polymers were obtained as white solid. The representative ${ }^{1} \mathrm{H}$ NMR spectrum of VCP homopolymer is shown in Figure S1. The characteristic proton signals of VCP units after polymerization are marked. According to the previous report of T. Endo et al. ${ }^{1}$, the structures of both ring-opened and ring-closed VCP units coexist in the VCP homopolymer. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the peak at $\delta=5.2 \mathrm{ppm}$ corresponds to the double bond protons from the VCP ring-opened structure (Structure $\mathbf{1}$ in Figure S 1). The broad signals between $1.5-2.5 \mathrm{ppm}$ can be assigned to the protons from the VCP ring-closed structure (Structure 2 in Figure S 1). The peaks at $\delta=1.1 \mathrm{ppm}$ and $\delta=4.1 \mathrm{ppm}$
correspond to the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ - group, which exists in both - the ring-opened and ring-closed structure. Through comparing the total peak areas of double bond protons (peak c in Figure S1, δ $=5.2 \mathrm{ppm}$) and methyl group (peak a in Figure $\mathrm{S} 1, \delta=1.2 \mathrm{ppm}$) the fraction of VCP units with ring-opened structure was calculated to be $52 \mathrm{~mol} \%$.

Figure S1. ${ }^{1} \mathrm{H}$-NMR spectrum of VCP homopolymer prepared at $120^{\circ} \mathrm{C}$. Structure 1: VCP unit with ring-opened structure in PVCP; structure 2: VCP unit with ring-closed structure in PVCP.

Structural characterization of APCNs

Figure S2. IR spectra of original VCP-MPDO copolymers (black) and APCNs (gel-3) after purification (red).

Calculation of reactivity ratios for VCP and MPDO copolymerization

The copolymerization of VCP and MPDO was carried out with various monomer feed ratios till low conversions ($\sim 5 \%$) to determine the reactivity ratios using kelen-Tüdõs method. The feed ratios and compositions of the resulting copolymers are summarized in Table S1.

Table S1. VCP-MPDO copolymerization for determining reactivity ratios

entry ${ }^{a}$	VCP:MPDO in feed			
$($ mol-\%)			\quad Yield (\%)	VCP:MPDO in Copolymer
:---:				
Copolymer I				
Copolymer II				
Copolymer III				

${ }^{a}$ reaction time: 6 h ; reaction temperature: $120^{\circ} \mathrm{C}$; initiator: di-tert-butyl peroxide ($1 \mathrm{wt} \%$ of monomer)
${ }^{b}$ Determined using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the resulting VCP-MPDO copolymers.

The r-parameters are determined applying the Kelen-Tüdõs method as follows (Table S2). ${ }^{2}$
$\eta=\left[r_{1}+\frac{r_{2}}{\alpha}\right] \cdot \xi-\frac{r_{2}}{\alpha}$
$\eta=\frac{G}{\alpha+F}$
$\xi=\frac{F}{\alpha+F}$
$G=\frac{x(y-1)}{y}$
$F=\frac{x^{2}}{y}$
$x=$ molar ratio of comonomers in feed $=m_{1} / m_{2} ; y=$ molar composition of the copolymer $=$
$\mathrm{M}_{1} / \mathrm{M}_{2}$
$\alpha=$ constant $=\sqrt{F_{m} F_{M}}\left(\mathrm{~F}_{\mathrm{m}}=\right.$ smallest F-value; $\mathrm{F}_{\mathrm{M}}=$ biggest F-value $)$

Table S2. r-parameters calculation using Kelen-Tüdõs method

	x	y	G	F	η	ξ
Copolymer I	4.04	2.04	2.06	8.00	0.24	0.93
Copolymer II	1.41	1.12	0.16	1.77	0.07	0.75
Copolymer III	0.65	0.86	-0.10	0.49	-0.10	0.45
Copolymer IV	0.39	0.71	-0.16	0.21	-0.19	0.26
Copolymer V	0.15	0.51	-0.14	0.04	-0.22	0.07

$$
\alpha=\sqrt{F_{m} F_{M}}=0.5923
$$

Figure S3. Kelen-Tüdõs plot for the determination of VCP and MPDO reactivity ratios (linear fit to the experimental data: $\mathrm{R}^{2}=0.953$).

The plot of η vs. ξ is shown in Figure S3. From the slope and intercept of the linear fit, the monomer reactivity ratios of VCP and MPDO were determined to $r_{V C P}=0.23 \pm 0.08$ and $r_{M P D O}=$ 0.18 ± 0.02. A comparison of the experimental data from Table S 1 with the calculated copolymerization diagram, using the r-values determined by the Kelen-Tüdõs method, shows an excellent agreement.

Figure S4. Calculated copolymerization diagram (blue curve) and comparison with experimental data (squares) from Table S1.

Thermal properties of VCP-MPDO copolymers

Figure S5. TGA profiles of VCP-MPDO copolymers with different comonomer ratios in feed.

Black-solid line: VCP:MPDO $=30: 70$; red-broken line: VCP:MPDO $=50: 50$; blue-dotted line:
$\mathrm{VCP}: \mathrm{MPDO}=70: 30$.

Figure S6. DSC heating traces of VCP-MPDO copolymers with different comonomer ratios in feed. Black-solid line: VCP:MPDO $=30: 70$; red-broken line: VCP:MPDO $=50: 50$; blue-dotted line: $\mathrm{VCP}: \mathrm{MPDO}=70: 30$.

Reference

(1) Sanda, F.; Takata, T.; Endo, T. Macromolecules 1993, 26, 1818-1824.
(2) Kelen, T.; Tüdõs, F. J. Macromol. Sci., Part A: Chem. 1975, 9, 1-27.

