Supporting Information

Designed Enzymatically Degradable Amphiphilic Conetworks by Radical Ring-Opening Polymerization

Yinfeng Shi, Holger Schmalz, Seema Agarwal*

Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, University of

Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

*Corresponding author: Seema Agarwal

E-mail address: agarwal@uni-bayreuth.de

Homopolymerization behavior of VCP

The homopolymerization behavior of the monomer VCP under radical ring-opening polymerization condition at 120 °C was studied. After purification, the polymers were obtained as white solid. The representative ¹H NMR spectrum of VCP homopolymer is shown in Figure S1. The characteristic proton signals of VCP units after polymerization are marked. According to the previous report of T. Endo *et al.*¹, the structures of both ring-opened and ring-closed VCP units coexist in the VCP homopolymer. In the ¹H NMR spectrum, the peak at $\delta = 5.2$ ppm corresponds to the double bond protons from the VCP ring-opened structure (Structure **1** in Figure S1). The broad signals between 1.5-2.5 ppm can be assigned to the protons from the VCP ring-closed structure (Structure **2** in Figure S1). The peaks at $\delta = 1.1$ ppm and $\delta = 4.1$ ppm

correspond to the CH_3CH_2O - group, which exists in both - the ring-opened and ring-closed structure. Through comparing the total peak areas of double bond protons (peak *c* in Figure S1, δ = 5.2 ppm) and methyl group (peak *a* in Figure S1, δ = 1.2 ppm) the fraction of VCP units with ring-opened structure was calculated to be 52 mol%.

Figure S1. ¹H-NMR spectrum of VCP homopolymer prepared at 120 °C. Structure 1: VCP unit with ring-opened structure in PVCP; structure 2: VCP unit with ring-closed structure in PVCP.

Structural characterization of APCNs

Figure S2. IR spectra of original VCP-MPDO copolymers (black) and APCNs (gel-3) after

purification (red).

Calculation of reactivity ratios for VCP and MPDO copolymerization

The copolymerization of VCP and MPDO was carried out with various monomer feed ratios till low conversions (~5%) to determine the reactivity ratios using kelen-Tüdõs method. The feed ratios and compositions of the resulting copolymers are summarized in Table S1.

entry ^a	VCP:MPDO in feed	Viald (0/)	VCP:MPDO in Copolymer	
	(mol-%)	Y leid (%)	(mol-%) ^b	
Copolymer I	80:20	5.7	67:33	
Copolymer II	59:41	7.8	53:47	
Copolymer III	39:61	4.2	46:54	
Copolymer IV	28:72	5.1	42:58	
Copolymer V	13:87	4.4	34:66	

Table S1. VCP-MPDO copolymerization for determining reactivity ratios

^a reaction time: 6 h; reaction temperature: 120 °C; initiator: di-tert-butyl peroxide (1 wt% of

monomer)

^b Determined using ¹H-NMR of the resulting VCP-MPDO copolymers.

The *r*-parameters are determined applying the Kelen-Tüdõs method as follows (Table S2).²

$\eta = \left[r_1 + \frac{r_2}{\alpha}\right] \cdot \xi - \frac{r_2}{\alpha}$	(1)
$\eta = \frac{G}{\alpha + F}$	(2)
$\xi = \frac{F}{\alpha + F}$	(3)
$G = \frac{x(y-1)}{y}$	(4)
$F = \frac{x^2}{y}$	(5)

x = molar ratio of comonomers in feed = m_1/m_2 ; y = molar composition of the copolymer = M_1/M_2

$$\alpha = \text{constant} = \sqrt{F_m F_M} (F_m = \text{smallest } F \text{-value}; F_M = \text{biggest } F \text{-value})$$

	X	у	G	F	η	کې
Copolymer I	4.04	2.04	2.06	8.00	0.24	0.93
Copolymer II	1.41	1.12	0.16	1.77	0.07	0.75
Copolymer III	0.65	0.86	-0.10	0.49	-0.10	0.45
Copolymer IV	0.39	0.71	-0.16	0.21	-0.19	0.26
Copolymer V	0.15	0.51	-0.14	0.04	-0.22	0.07

Table S2. r-parameters calculation using Kelen-Tüdõs method

 $\alpha = \sqrt{F_m F_M} = 0.5923$

Figure S3. Kelen-Tüdõs plot for the determination of VCP and MPDO reactivity ratios (linear fit to the experimental data: $R^2 = 0.953$).

The plot of η vs. ξ is shown in Figure S3. From the slope and intercept of the linear fit, the monomer reactivity ratios of VCP and MPDO were determined to $r_{VCP} = 0.23 \pm 0.08$ and $r_{MPDO} = 0.18 \pm 0.02$. A comparison of the experimental data from Table S1 with the calculated copolymerization diagram, using the *r*-values determined by the Kelen-Tüdõs method, shows an excellent agreement.

Figure S4. Calculated copolymerization diagram (blue curve) and comparison with experimental

data (squares) from Table S1.

Thermal properties of VCP-MPDO copolymers

Figure S5. TGA profiles of VCP-MPDO copolymers with different comonomer ratios in feed. Black-solid line: VCP:MPDO = 30:70; red-broken line: VCP:MPDO = 50:50; blue-dotted line: VCP:MPDO = 70:30.

Figure S6. DSC heating traces of VCP-MPDO copolymers with different comonomer ratios in feed. Black-solid line: VCP:MPDO = 30:70; red-broken line: VCP:MPDO = 50:50; blue-dotted line: VCP:MPDO = 70:30.

Reference

- (1) Sanda, F.; Takata, T.; Endo, T. Macromolecules 1993, 26, 1818-1824.
- (2) Kelen, T.; Tüdős, F. J. Macromol. Sci., Part A: Chem. 1975, 9, 1-27.