Supporting Information for:

Amphiphilic Poly(disulfide) Micelle and Remarkable Impact of the Core Hydrophobicity on Redox Responsive Disassembly

Dipankar Basak,[†] Raju Bej[†] and Suhrit Ghosh*

Indian Association for the Cultivation of Science, Polymer Science Unit 2A & 2B Raja S. C. Mullick Road, Kolkata, India-700032 Email: <u>psusg2@iacs.res.in</u>

Synthesis of P1:

P1a: The polymer **P1a** was synthesized by following literature reported protocol.¹ **M1** (0.867 g, 3.94 mmol) was taken in a reaction tube equipped with a magnetic stirrer, septum and gas inlet/outlet. After degassing for five minutes, 0.8 mL of dry and degassed dichloromethane was added and stirred for 10 minutes at room temperature (25 °C) to obtain a homogeneous solution. To this stirring solution 0.7 g (3.84 mmol) of **M2** and catalytic amount of acetic acid (10 μ L) were added sequentially and the reaction mixture was stirred further at room temperature for 3 h. Afterwards the yellow suspension was dissolved in CHCl₃ (200 μ L) and precipitated from excess of methanol. The yellow precipitate was re-dissolved in CHCl₃, and re-precipitated from methanol and dried under vacuum to obtain **P1a** as sticky light yellow liquid (0.57 g, 81%).

P1a: ¹H NMR (CDCl₃, 500 MHz) δ: 8.458 (d, g, J = 4Hz, 2H); 7.778 (bs, <u>e</u>, 2H); 7.684-7.649 (m, <u>f</u>, 2H); 7.108-7.084 (m, <u>d</u>, 2H); 3.82- 3.664 (m, <u>b</u>, 4H), 3.635-3.484 (m, <u>a</u>, 4H), 3.014-2.878 (m, <u>c</u>, 4H),

P1b: Synthesis same as **P1a** (Yield 76%). (CDCl₃, 500 MHz) δ: 8.72 (bs, *g*, 2H); 8.20 (bs, *<u>e+f</u>, 4H); 7.55 (bs, <i><u>d</u>, 2H); 2.75-2.64 (m, <u><i>c*</u>, 4H), 1.77-1.71 (m, <u>*b*</u>, 4H), 1.49-1.42 (m, *<u>a</u>*, 4H).

P2a: To a glass ampule containing disulfide polymer **P1a** (0.184 g, 0.059 mmol) was added 0.5 mL of CH_2Cl_2 . To this stirring solution one drop of acetic acid and 2-Mercaptoethanol (1.2 eq w.r.t the pyridyl sulfide group) were added and the resulting

solution was stirred at room temperature under argon for 3 h. Afterwards, the polymer was precipitated from methanol, washed repeatedly with methanol and dried under vacuum to furnish **P2a** as colorless waxy material (0.14 g, 78%). ¹H NMR (CDCl₃, 500 MHz) δ : 3.885 (t, <u>h</u>, *J* = 6.0Hz, 4H), 3.768- 3.724 (m, <u>b</u>, 4H), 3.644-3.635 (m, <u>a</u>, 4H), 2.929-2.861 (m, <u>c</u>, 4H),

P2b: same as **P2a**, yield: 79%, ¹H NMR (CDCl₃, 500 MHz) δ : 3.91 (t, <u>*h*</u>, *J* = 6.0 Hz, 4H), 2.87-2.68 (m, <u>*c*</u>, 4H); 1.78-1.71 (m, <u>*b*</u>, 4H), 1.52-1.43 (m, <u>*a*</u>, 4H).

P3a: The disulfide polymer **P2a** (0.137 g, 0.043 mmol) was taken in a reaction tube, equipped with a magnetic stirrer, septum and gas inlet/outlet and dissolved in 0.4 mL of dry and degassed dichloromethane. To this stirring solution triethylamine (119 μ L, 0.853 mmol) was added drop wise and stirred for 10 min. A solution of 2-Bromoisobutyryl bromide (105 μ L, 0.853 mmol, dissolved in 100 μ L of CH₂Cl₂) was added drop wise for 10 min at 0 °C and the solution was allowed to come to room temperature and further stirred at this temperature for 12 h. After the course of the reaction, 0.4 mL CH₂Cl₂ was added and the organic layer was washed with aqueous solution of saturated sodium bicarbonate (3 x 0.5 mL). The organic layer was collected, dried over anhydrous sodium sulfate, and evaporated under vacuum. The resulting liquid was further dissolved in 200 μ L of CHCl₃ and precipitated from methanol to yield **P3a** as solid powder (0.101 g, 68%). ¹H NMR (CDCl₃, 500 MHz) δ : 4.44 (t, <u>h</u>, *J* = 6.5Hz, 4H), 3.74 (t, <u>b</u>, *J* = 6.5 Hz, 4H), 3.64 (s, <u>a</u>, 4H), 2.97-2.88 (m, <u>c</u>, 4H), 1.94 (s, <u>i</u>, 6H).

P3b: same as **P3a**, yield: 67%, ¹H NMR (CDCl₃, 400 MHz) δ: 4.43 (t, <u>h'</u>, J = 6.8 Hz, 4H), 2.73-2.66 (m, <u>c</u>, 4H); 1.95 (s, <u>i</u>) 1.69-1.67 (m, <u>b</u>, 4H), 1.43-1.39 (m, <u>a</u>, 4H).

P4a: PTEGMA-*b*-PDS-*b*-PTEGMA block copolymers were synthesized using standard ATRP technique. In a typical polymerization run, Cu(I)Br (2.45 mg, 0.017 mmol) was taken in a glass ampule equipped with a septum and gas inlet/outlet. After degassing for 5 min, **M4** (0.397 g, 1.708 mmol) and a solution of PMDETA (7.2 μ L, 0.034 mmol; a stock solution of PMDETA was prepared by adding 36 μ L PMDETA in 100 μ L of dry and degassed anisole, from which 20 μ L was added) in dry and degassed anisole were added to the glass ampule and stirred for 10 min at room temperature to allow catalyst

formation while the solution (total volume 100 μ L) turned into light green color. To it a homogeneous solution of **P3a** (0.03 g, 0.0085 mmol) dissolved in 100 μ l of degassed anisole was added and the resulting mixture was transferred to a pre-heated oil bath at 90 °C and stirred for 3 h at this temperature under argon atmosphere. Polymerization was rapidly quenched after dipping the reaction ampule into liquid nitrogen and then the green viscous product was dissolved in 0.2 mL of CHCl₃ and precipitated from diethyl ether. The precipitate was centrifuged and dried in vacuum to obtain **P4a** as slightly bluish sticky polymer (0.145 g, 52%).

¹H NMR (CDCl₃, 500 MHz) δ : 4.088 (bs, <u>d</u>, 2H), 3.757 (t, <u>b</u>, J = 6.5Hz, 4H) 3.665-3.651 (m, <u>a+e+f</u>, 12H), 3.558 (s, g, 2H), 3.384 (s, <u>h</u>, 3H), 3.00-2.953 (m, <u>c</u>, 4H), 1.897-1.801 (m, polymer backbone), 1.631 (s, <u>j</u>, 2H), 1.032-0.86 (bs, <u>i</u>, 3H)

P4b: same as **P4a**, yield: 41%, ¹H NMR (CDCl₃, 500 MHz) δ: 4.09 (bs, <u>a</u>, 2H), 3.66-3.57 (bs, <u>c+d</u>, 8H), 3.57 (bs, <u>h</u>, 2H), 3.39 (bs, <u>b</u>, 3H), 2.79-2.73 (m, <u>e</u>, 4H), 1.91-1.74 (m, <u>f</u>, 4H), 1.61 (bs, <u>j</u>, 2H), 1.56 (bs, <u>g</u>, 4H), 1.25-0.87 (b, <u>i</u>, 3H)

Additional Figures:

Table S1:	Solubility	tests	of P4	a (c =	1.0	mg/mL)	in	different	solvents	at	room
temperature	(25 °C)										

Solvent	Observation		
water	insoluble		
methanol	insoluble		
ethanol	insoluble		
^t butanol	insoluble		
chloroform	soluble		
tetrahydrofuran	soluble		
acetone	soluble		
1,4-dioxane	soluble		
DMF	soluble		
diethyl ether	partially soluble		

Entry	CAC(M)	Encapsulation efficiency/1.0mg polymer	I ₃₇₃ /I ₃₈₄
P4a	1x10 ⁻⁵	0.0046 mg	1.36 CH ₂ Cl ₂ (1.37) 8.93 ϵ_0 at 20°C
P4b	7.5x10 ⁻⁶	0.0061 mg	1.31 CHCl ₃ (1.28) 4.8ε _o at 20°C

Table S2: Comparative physical parameters of P4a and P4b obtained using pyrene as a hydrophobic probe

Fig. S1 GPC traces of P1a (in black) and P2a (in red) in THF

Fig. S2 UV-vis spectrum of P1a (black) and M2 (red) after treating with Ellman's reagent (c = 0.1 mg/mL polymer/M2, 1.0 cm pathlength)

Fig. S3 ¹H NMR spectra of **P1b-P3b** in CDCl₃, X indicates peaks corresponding to residual CHCl₃ in CDCl₃

Fig. S4 MALDI-ToF spectrum of **P1b**. m/z = 2616.8 matches with (16x148.5(mass of repeat unit) + 2x110.01(mass of pyridyl sulfide)+22.99 (mass of sodium)

Fig. S5 UV-vis spectra of P1b (black) and P2b (red) in $CHCl_3$ (c = 1.0 mg/10 mL, 1.0 cm pathlength) showing absence of pyridyl group in P2b

Fig. S6 Comparative FT-IR spectra of **P1b** (black) and **P2b** (red) show absence of the peaks corresponding to C=N stretching (at 1574 and 1560 cm⁻¹) in **P2b** (KBr window)

Fig. S7 MALDI-ToF spectrum of **P2b**. m/z = 2846.6 matches with (18x148.5(mass of repeat unit) + 2x77.13(mass of 2-mercaptoethanol)+22.99 (mass of sodium)

Fig. S8 Selective region of comparative FT-IR spectra of P3b (red) and P2b (black) (KBr window)

Fig. S9 GPC traces of P4b (red) and P3b (black) in THF

Fig. S10 ¹H NMR of P4b in CDCl₃, X indicates peak corresponding to the residual CHCl₃ in CDCl₃

Fig. S11 Influence of temperature on transmittance of (left) **P4a** and (right) **P4b** ($c = 5x10^{-5}$ M, 1.0 cm pathlength)

Fig. S12 Absorption spectra of pyrene in dichloromethane (pyrene concentration: 1×10^{-5} M), pathlength of cuvette = 1 cm, temperature = 25 °C

Fig. S13 Emission spectra of pyrene encapsulated in aqueous solution of P4b at varying concentrations; (inset) Variation of I_{373}/I_{384} in pyrene emission spectra as a function of P4b concentration, pyrene concentration was kept constant ($c = 1 \times 10^{-5}$ M) in all cases

Fig. S14 Comparison of Nile red (NR) emission in water (black) and NR-encapsulated P4a polymer (red), $\lambda_{ex} = 530$ nm

Fig. S15 Comparative NR release profile of **P4b** upon treatment with different GSH concentrations: 20.0 mM (red circle), 60.0 mM (black box)

References:

1. D. Basak, R. Kumar and S. Ghosh, Macromol. Rapid Commun., 2014, 35, 1340-1344.