Amphiphilic Poly(disulfide) Micelle and Remarkable Impact of the Core Hydrophobicity on Redox Responsive Disassembly

Dipankar Basak, ${ }^{\dagger}$ Raju Bej† and Suhrit Ghosh*

Indian Association for the Cultivation of Science, Polymer Science Unit
2A \& 2B Raja S. C. Mullick Road, Kolkata, India-700032
Email: psusg2@iacs.res.in

Synthesis of P1:

P1a: The polymer P1a was synthesized by following literature reported protocol. ${ }^{1}$ M1 $(0.867 \mathrm{~g}, 3.94 \mathrm{mmol})$ was taken in a reaction tube equipped with a magnetic stirrer, septum and gas inlet/outlet. After degassing for five minutes, 0.8 mL of dry and degassed dichloromethane was added and stirred for 10 minutes at room temperature $\left(25^{\circ} \mathrm{C}\right)$ to obtain a homogeneous solution. To this stirring solution $0.7 \mathrm{~g}(3.84 \mathrm{mmol})$ of M2 and catalytic amount of acetic acid $(10 \mu \mathrm{~L})$ were added sequentially and the reaction mixture was stirred further at room temperature for 3 h . Afterwards the yellow suspension was dissolved in $\mathrm{CHCl}_{3}(200 \mu \mathrm{~L})$ and precipitated from excess of methanol. The yellow precipitate was re-dissolved in CHCl_{3}, and re-precipitated from methanol and dried under vacuum to obtain P1a as sticky light yellow liquid ($0.57 \mathrm{~g}, 81 \%$).

P1a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 8.458(\mathrm{~d}, g, J=4 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.778$ (bs, $\underline{e}, 2 \mathrm{H}$); 7.6847.649 (m, $£, 2 \mathrm{H}$); 7.108-7.084 (m, d, 2H); 3.82-3.664 (m, $\underline{b}, 4 \mathrm{H}$), 3.635-3.484 (m, \underline{a}, $4 \mathrm{H}), 3.014-2.878(\mathrm{~m}, \underline{c}, 4 \mathrm{H})$,

P1b: Synthesis same as P1a (Yield 76\%). $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 8.72$ (bs, g, 2H); 8.20 (bs, $\underline{e+f, ~ 4 H) ; ~} 7.55$ (bs, $\underline{d}, 2 \mathrm{H}) ; 2.75-2.64$ (m, $\underline{c}, 4 \mathrm{H}), 1.77-1.71$ (m, $\underline{b}, 4 \mathrm{H}), 1.49-1.42$ (m, $\underline{a}, 4 \mathrm{H})$.

P2a: To a glass ampule containing disulfide polymer P1a ($0.184 \mathrm{~g}, 0.059 \mathrm{mmol}$) was added 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this stirring solution one drop of acetic acid and 2Mercaptoethanol (1.2 eq w.r.t the pyridyl sulfide group) were added and the resulting
solution was stirred at room temperature under argon for 3 h . Afterwards, the polymer was precipitated from methanol, washed repeatedly with methanol and dried under vacuum to furnish P2a as colorless waxy material $(0.14 \mathrm{~g}, 78 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta: 3.885(\mathrm{t}, \underline{h}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.768-3.724(\mathrm{~m}, \underline{b}, 4 \mathrm{H}), 3.644-3.635(\mathrm{~m}, \underline{a}, 4 \mathrm{H})$, 2.929-2.861 (m, $\underline{c}, 4 \mathrm{H}$),

P2b: same as P2a, yield: 79\%, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.91(\mathrm{t}, \underline{h}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H})$, 2.87-2.68 (m, $\underline{c}, 4 \mathrm{H}) ; 1.78-1.71(\mathrm{~m}, \underline{b}, 4 \mathrm{H}), 1.52-1.43(\mathrm{~m}, \underline{a}, 4 \mathrm{H})$.

P3a: The disulfide polymer P2a $(0.137 \mathrm{~g}, 0.043 \mathrm{mmol})$ was taken in a reaction tube, equipped with a magnetic stirrer, septum and gas inlet/outlet and dissolved in 0.4 mL of dry and degassed dichloromethane. To this stirring solution triethylamine ($119 \mu \mathrm{~L}, 0.853$ mmol) was added drop wise and stirred for 10 min . A solution of 2-Bromoisobutyryl bromide ($105 \mu \mathrm{~L}, 0.853 \mathrm{mmol}$, dissolved in $100 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added drop wise for 10 min at $0^{\circ} \mathrm{C}$ and the solution was allowed to come to room temperature and further stirred at this temperature for 12 h . After the course of the reaction, $0.4 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic layer was washed with aqueous solution of saturated sodium bicarbonate ($3 \times 0.5 \mathrm{~mL}$). The organic layer was collected, dried over anhydrous sodium sulfate, and evaporated under vacuum. The resulting liquid was further dissolved in 200 $\mu \mathrm{L}$ of CHCl_{3} and precipitated from methanol to yield P3a as solid powder (0.101 g , $68 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 4.44(\mathrm{t}, \underline{h}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.74(\mathrm{t}, \underline{b}, J=6.5 \mathrm{~Hz}$, $4 \mathrm{H}), 3.64(\mathrm{~s}, \underline{a}, 4 \mathrm{H}), 2.97-2.88(\mathrm{~m}, \underline{c}, 4 \mathrm{H}), 1.94(\mathrm{~s}, \underline{i}, 6 \mathrm{H})$.

P3b: same as P3a, yield: $67 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.43(\mathrm{t}, \underline{h}, J=6.8 \mathrm{~Hz}$, $4 \mathrm{H}), 2.73-2.66(\mathrm{~m}, \underline{c}, 4 \mathrm{H}) ; 1.95(\mathrm{~s}, \underline{i})$ 1.69-1.67 (m, $\underline{b}, 4 \mathrm{H}), 1.43-1.39(\mathrm{~m}, \underline{a}, 4 \mathrm{H})$.

P4a: PTEGMA- b-PDS- b-PTEGMA block copolymers were synthesized using standard ATRP technique. In a typical polymerization run, $\mathrm{Cu}(\mathrm{I}) \mathrm{Br}(2.45 \mathrm{mg}, 0.017 \mathrm{mmol})$ was taken in a glass ampule equipped with a septum and gas inlet/outlet. After degassing for 5 min, M4 ($0.397 \mathrm{~g}, 1.708 \mathrm{mmol}$) and a solution of PMDETA ($7.2 \mu \mathrm{~L}, 0.034 \mathrm{mmol}$; a stock solution of PMDETA was prepared by adding $36 \mu \mathrm{~L}$ PMDETA in $100 \mu \mathrm{~L}$ of dry and degassed anisole, from which $20 \mu \mathrm{~L}$ was added) in dry and degassed anisole were added to the glass ampule and stirred for 10 min at room temperature to allow catalyst
formation while the solution (total volume $100 \mu \mathrm{~L}$) turned into light green color. To it a homogeneous solution of P3a ($0.03 \mathrm{~g}, 0.0085 \mathrm{mmol}$) dissolved in $100 \mu \mathrm{l}$ of degassed anisole was added and the resulting mixture was transferred to a pre-heated oil bath at 90 ${ }^{\circ} \mathrm{C}$ and stirred for 3 h at this temperature under argon atmosphere. Polymerization was rapidly quenched after dipping the reaction ampule into liquid nitrogen and then the green viscous product was dissolved in 0.2 mL of CHCl_{3} and precipitated from diethyl ether. The precipitate was centrifuged and dried in vacuum to obtain P4a as slightly bluish sticky polymer ($0.145 \mathrm{~g}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 4.088(\mathrm{bs}, \underline{d}, 2 \mathrm{H}), 3.757(\mathrm{t}, \underline{b}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}) 3.665-3.651$ $(\mathrm{m}, \underline{a+e+f,} 12 \mathrm{H}), 3.558(\mathrm{~s}, g, 2 \mathrm{H}), 3.384(\mathrm{~s}, \underline{h}, 3 \mathrm{H}), 3.00-2.953(\mathrm{~m}, \underline{c}, 4 \mathrm{H}), 1.897-1.801$ (m, polymer backbone), $1.631(\mathrm{~s}, \mathrm{j}, 2 \mathrm{H}), 1.032-0.86(\mathrm{bs}, i, 3 \mathrm{H})$

P4b: same as P4a, yield: $41 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 4.09(\mathrm{bs}, \underline{a}, 2 \mathrm{H}), 3.66-3.57$ (bs, $\underline{c}+\underline{d}, 8 \mathrm{H}$), 3.57 (bs, $\underline{h}, 2 \mathrm{H}$), $3.39(\mathrm{bs}, \underline{b}, 3 \mathrm{H}), 2.79-2.73(\mathrm{~m}, \underline{e}, 4 \mathrm{H}), 1.91-1.74(\mathrm{~m}, f$, 4H), 1.61 (bs, $\dot{,}, 2 \mathrm{H}), 1.56$ (bs, $g, 4 \mathrm{H}), 1.25-0.87$ (b, $\underline{i}, 3 \mathrm{H})$

Additional Figures:

Table S1: Solubility tests of P4a ($c=1.0 \mathrm{mg} / \mathrm{mL}$) in different solvents at room temperature $\left(25^{\circ} \mathrm{C}\right)$

Solvent	Observation
water	insoluble
methanol	insoluble
ethanol	insoluble
butanol	insoluble
chloroform	soluble
tetrahydrofuran	soluble
acetone	soluble
1,4-dioxane	soluble
DMF	soluble
diethyl ether	partially soluble

Table S2: Comparative physical parameters of P4a and P4b obtained using pyrene as a hydrophobic probe
\(\left.$$
\begin{array}{llll}\hline \text { Entry } & \mathrm{CAC}(\mathrm{M}) & \begin{array}{l}\text { Encapsulation } \\
\text { efficiency/1.0mg } \\
\text { polymer }\end{array}
$$ \& \mathrm{I}_{373} / \mathrm{I}_{384}

\hline P4a \& 1 \times 10^{-5} \& 0.0046 \mathrm{mg} \& 1.36 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.37)

\& \& \& 8.93 \varepsilon_{0} at 20^{\circ} \mathrm{C}\end{array}\right]\)| P4b | 7.5×10^{-6} | 0.0061 mg |
| :--- | :--- | :--- |
| | | |
| | | $4.31 \quad \mathrm{CHCl}_{3}(1.28)$ |
| | | |

Fig. S1 GPC traces of P1a (in black) and P2a (in red) in THF

Fig. S2 UV-vis spectrum of P1a (black) and M2 (red) after treating with Ellman's reagent ($c=0.1 \mathrm{mg} / \mathrm{mL}$ polymer $/ \mathbf{M 2}, 1.0 \mathrm{~cm}$ pathlength)

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectra of P1b-P3b in $\mathrm{CDCl}_{3}, \mathrm{X}$ indicates peaks corresponding to residual CHCl_{3} in CDCl_{3}

Fig. S4 MALDI-ToF spectrum of P1b. $m / z=2616.8$ matches with ($16 x 148.5$ (mass of repeat unit) $+2 \times 110.01$ (mass of pyridyl sulfide) +22.99 (mass of sodium)

Fig. S5 UV-vis spectra of P1b (black) and P2b (red) in CHCl $_{3}(c=1.0 \mathrm{mg} / 10 \mathrm{~mL}, 1.0$ cm pathlength) showing absence of pyridyl group in $\mathbf{P 2 b}$

Fig. S6 Comparative FT-IR spectra of P1b (black) and P2b (red) show absence of the peaks corresponding to $\mathrm{C}=\mathrm{N}$ stretching (at 1574 and $1560 \mathrm{~cm}^{-1}$) in $\mathbf{P 2 b}$ (KBr window)

Fig. S7 MALDI-ToF spectrum of P2b. $m / z=2846.6$ matches with (18x148.5(mass of repeat unit) $+2 \times 77.13$ (mass of 2-mercaptoethanol) +22.99 (mass of sodium)

Fig. S8 Selective region of comparative FT-IR spectra of P3b (red) and P2b (black) (KBr window)

Fig. S9 GPC traces of P4b (red) and P3b (black) in THF

Fig. S10 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{P 4 b}$ in CDCl_{3}, X indicates peak corresponding to the residual CHCl_{3} in CDCl_{3}

Fig. S11 Influence of temperature on transmittance of (left) P4a and (right) P4b (c= $5 \times 10^{-5} \mathrm{M}, 1.0 \mathrm{~cm}$ pathlength)

Fig. S12 Absorption spectra of pyrene in dichloromethane (pyrene concentration: 1x10-5 M), pathlength of cuvette $=1 \mathrm{~cm}$, temperature $=25^{\circ} \mathrm{C}$

Fig. S13 Emission spectra of pyrene encapsulated in aqueous solution of P4b at varying concentrations; (inset) Variation of $\mathrm{I}_{373} / \mathrm{I}_{384}$ in pyrene emission spectra as a function of $\mathbf{P 4 b}$ concentration, pyrene concentration was kept constant $\left(c=1 \times 10^{-5} \mathrm{M}\right)$ in all cases

Fig. S14 Comparison of Nile red (NR) emission in water (black) and NR-encapsulated P4a polymer (red), $\lambda_{\text {ex }}=530 \mathrm{~nm}$

Fig. S15 Comparative NR release profile of P4b upon treatment with different GSH concentrations: 20.0 mM (red circle), 60.0 mM (black box)

References:

1. D. Basak, R. Kumar and S. Ghosh, Macromol. Rapid Commun., 2014, 35, 1340-1344.
