Supporting Information

Fe(III)–Mediated ICAR ATRP in p-Xylene/PEG-200 Biphasic System: Facile and Highly Efficient

Separation and Recycling of Iron Catalyst

5 Bingjie Zhang, Xiaowu Jiang, Lifen Zhang,* Zhenping Cheng* and Xiulin Zhu

Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

10 *Corresponding authors. E-mail: chengzhenping@suda.edu.cn (Z. P. Cheng) or zhanglifen@suda.edu.cn (L. F. Zhang), Fax: 86-512-65882787

Table S1. Recycling experiments for Fe(III)-mediated TPSC-based ICAR ATRP of MMA.

Entry	Recycling times ^a	Monomer conversion (%)	$M_{n,th}^{b}$ (g/mol)	M _{n,GPC} (g/mol)	$M_{ m w}/M_{ m n}$
1	1	23.5	5000	9000	1.27
2	2	73.8	15000	16500	1.21
3	3	82	16600	16000	1.28
4	4	80.2	16300	17300	1.19
5	5	84.1	17000	16800	1.28
6	6	81.6	16600	16800	1.30
7	7	77.8	15900	17700	1.34
8	8	83.9	17000	16500	1.45
9	9	83.6	17000	18000	1.39
10	10	80.2	16300	20100	1.45

15 Polymerization conditions: [monomer]₀:[EBPA]₀:[FeCl₃·6H₂O]₀: [TBABr]₀:[AIBN]₀ = 200:1:1:3:1, $V_{\text{monomer}} = 1.0 \text{ mL}, V_{p-xylene} = 2.0 \text{ mL} \text{ and } V_{\text{PEG-200}} = 1.0 \text{ mL}, \text{ temperature} = 70 \text{ °C}.$ *a*Polymerization was conducted using the iron catalyst solution in PEG-200 after every recycling experiment without adding any fresh FeCl₃·6H₂O and TBABr. ${}^{b}M_{n,\text{th}} = ([M]_{0}/[EBPA]_{0}) \times M_{w,MMA} \times \text{conv.\%}.$

20

Figure S1. MALDL-TOF-MS in the linear mode of PMMA-Br and PMMA-Cl ($M_{n,GPC} = 8700$ g/mol, 5 $M_w/M_n = 1.25$) (a) and enlargement of the MALDL-TOF-MS from m/z 8400 to 9200 of PMMA-Br and PMMA-Cl (b).

Figure S2. Recycling efficiency of iron catalyst at different recycle times. Polymerization conditions : $[MMA]_0:[EBPA]_0:[FeCl_3:6H_2O]_0:[TBABr]_0: [AIBN]_0 = 200:1:1:3:1, V_{MMA} = 1.0 mL, V_{p-xylene} = 2.0 mL and V_{PEG-200} = 1.0 mL, temperature = 70 °C. Recycling efficiency is the percentage of residual iron 5 catalyst in PEG-200 phase to the original iron catalyst, which was determined by inductively coupled plasma (ICP) of Vista MPX.$