Supporting Information for

Asymmetrical Vesicles: Convenient In Situ RAFT Synthesis and Controllable Structure Determination

Zefeng Song, Xin He, Chengqiang Gao, Habib Khan, Pengfei Shi, and Wangqing Zhang*

Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

*To whom correspondence should be addressed. E-mail: (W. Zhang) wqzhang@nankai.edu.cn, Tel: +86-22-23509794, Fax: +86-22-23503510.

1 Synthesis of mPEG₄₅-TTC

Into a dry 100 mL flask, DDMAT (1.46 g, 4.00 mmol) and DCM (20.0 mL) were added, and subsequently dripping addition of oxalyl chloride $[(COCl)_2, 1.7 \text{ mL}, 20.0 \text{ mmol}]$ dissolved in DCM (10.0 mL) in 10 min under nitrogen atmosphere was followed. The mixture was magnetically stirred under nitrogen atmosphere at 25 ⁰C for about 2 h until the gas evolution stopped. The solvent and the excess oxalyl chloride were removed by rotary evaporation. Into the flask, *m*PEG₄₅-OH (4.00 g, 2.00 mmol) dissolved in DCM (20.0 mL) was added, and the reaction was allowed to proceed for 24 h at 25 ⁰C with magnetically stirring under nitrogen atmosphere. The solution was concentrated under reduced pressure, and the polymer was precipitated in *n*-hexane and dried in a vacuum oven at room temperature to afford the desired macro-RAFT agent of PEG₄₅-TTC (4.6 g, 97% yield).

Scheme S1. Synthesis of PEG₄₅-TTC.

2 Tables

-			•			-	
Macro-RAFT	[M] ₀ :[CTA] ₀ :[I] ₀	Time (h)	Conv. $(\%)^{a}$	$M_{\rm n}$ (kg/mol)			DDI ^e
				$M_{ m n,th}^{ m b}$	$M_{n,GPC}^{c}$	$M_{n,NMR}^{d}$	PDI
P4VP ₂₉ -TTC	120:4:1	12	96	3.4	2.9	3.6	1.18
P4VP ₄₆ -TTC	200:4:1	12	92	5.2	4.8	5.5	1.14
P4VP ₆₆ -TTC	300:4:1	12	88	7.3	7.0	7.8	1.15
P4VP ₉₃ -TTC	400:4:1	12	93	10.1	9.8	10.9	1.16

Table S1. Experimental details and summary of the P4VP macro-RAFT agents.

^a The monomer conversion determined by ¹H NMR analysis. ^b Theoretical molecular weight determined by monomer conversion. ^c The molecular weight determined by GPC analysis. ^d The molecular weight determined by ¹H NMR analysis. ^e The PDI (M_w/M_n) value determined by GPC analysis.

3 Equations

$$M_{n,\text{NMR}} = \frac{9I_{3.64}}{2I_{1.1-1.45}} \times 44 + 364 \tag{S1}$$

$$M_{\rm n,NMR} = \frac{3I_{8.30}}{2I_{0.88}} \times M_{\rm n,4VP} + M_{\rm n,RAFT}$$
(S2)

$$S_{out}/S_{in} = \frac{4\pi (\frac{D_0}{2})^2}{4\pi [\frac{(D_0-2D_1)}{2}]^2} = \frac{D_0^2}{(D_0-2D_1)^2}$$
(S3)

4 Figures

Figure S1. The ¹H NMR spectra of DDMAT.

Figure S2. The time dependent monomer conversion in the individual macro-RAFT agent mediated polymerization in the presence of PEG_{45} -TTC or $P4VP_{46}$ -TTC. Polymerization conditions: St (1.50 g, 14.4 mmol), the methanol/water mixture (9.25 g, 80/20 by weight), $[St]_0:[macro-RAFT]:[AIBN]_0 = 300:1:1/3, 70$ °C.

Figure S3. The TEM images of the PEG₄₅-*b*-PS nano-objects prepared through the PEG₄₅-TTC macro-RAFT agents mediated dispersion polymerization at different polymerization times. Polymerization conditions: St (1.50 g, 14.4 mmol), the methanol/water mixture (9.25 g, 80/20 by weight), $[St]_0:[PEG_{45}-TTC]:[AIBN]_0 = 300:1:1/3$, 70 °C. Note: the TEM samples are not stained.

Figure S4. The TEM images of the P4VP₄₆-*b*-PS nano-objects prepared through the P4VP₄₆-TTC macro-RAFT agents mediated dispersion polymerization at different polymerization times. Polymerization conditions: St (1.50 g, 14.4 mmol), the methanol/water mixture (9.25 g, 80/20 by weight), $[St]_0:[P4VP_{46}-TTC]:[AIBN]_0 = 300:1:1/3, 70 \,^{\circ}C$. Note: the TEM samples are not stained.

Figure S5. The ¹H NMR spectra of PEG_{45} -*b*- PS_{261} (A) and $P4VP_{46}$ -*b*- PS_{279} (B) prepared through the individual macro-RAFT agent mediated dispersion polymerization at 14 h. Note: the polymerization conditions can be found in the Captions for Figures S3 and S4.

Figure S6. The GPC traces of PEG_{45} -*b*- PS_{261} and $P4VP_{46}$ -*b*- PS_{279} . prepared through the individual macro-RAFT agent mediated dispersion polymerization at 14 h. Note: the polymerization conditions can be found in the Captions for Figures S3 and S4.

Figure S7. The ¹H NMR spectra of the PEG-*b*-PS/P4VP-*b*-PS mixture before and after separation. Note: in the separated P4VP₄₆-*b*-PS₂₁₉, P4VP₆₆-*b*-PS₂₁₆ and P4VP₉₃-*b*-PS₂₃₄, about part of the PEG₄₅-*b*-PS diblock copolymer at about 7%, 11% and 13.7% was immerged. For the PEG₄₅-*b*-PS₂₂₅/P4VP₂₉-*b*-PS₂₂₅ mixture, part of PEG₄₅-*b*-PS₂₂₅ was separated and its NMR spectra as indicated by the black plot were shown in Figure S7, whereas the separation of P4VP₂₉-*b*-PS₂₂₅ was not achieved.