Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

Synthesis and properties of polyesters derived from renewable

eugenol and α,ω -diols via a continuous overheating method

Keling Hu,^a Dongping Zhao,^a Guolin Wu^{*,a} and Jianbiao Ma^{*,b}

^a Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer

Chemistry, Nankai University, Tianjin 300071, P R China

^b School of Chemistry and Chemical Engineering, Tianjin University of Technology,

Tianjin 300191, P R China

Corresponding author: guolinwu@hotmail.com

Reaction time (h)	Transesterification temperature ($^{\circ}$ C)				Polycondensation temperature ($^{\circ}$ C)		
α,ω-diols	100	120	140	160	160	180	200
1,2-ethylene glycol	0.5	1	1	2	2	2	1
1,3-propanediol	0.5	1	1	2	2	2	1
1,4-butanediol	0.5	1	1	2	2	2	1
1,6-hexanediol	0.5	1	1	2	1	2	1
1,10-decanediol	0.5	0.5	1	2	1	2	1
1,12-dodecanediol	0.5	0.5	1	2	1	2	1

Table S1 Polymerization strategies for the synthesis of PM2- ω s with α, ω -diols

Fig. S1 ¹H NMR spectrum of P1

Fig. S2 ¹³C NMR spectrum of P1

Fig. S7 SEC traces of PM2-ωs

Fig. S8 ¹H NMR spectra of PM1-2, PM1-4 and PM1-10

Fig. S9 ¹H NMR spectra of PM1-3, PM1-6 and PM1-12

Fig. S10 ¹H NMR spectra of PM2-2, PM2-3 and PM2-10

Fig. S11 ¹H NMR spectra of PM2-4, PM2-6 and PM2-12

Fig. S14 ¹³C NMR spectrum of PM1-4

Fig. S17 13 C NMR spectrum of PM1-12

Fig. S20 ¹³C NMR spectrum of PM2-4

Fig. S23 ¹³C NMR spectrum of PM2-12

Fig. S24 FTIR spectra of PM1-2, PM1-3, PM1-6 and PM1-12

Fig. S25 FTIR spectra of PM1-4, PM2-4, PM1-10 and PM2-10

Fig. S26 FTIR spectra of PM2-2, PM2-3, PM2-6 and PM2-12

Fig. S27 ¹³C NMR signals used for the microstructure analysis of **PM1-10** with schematic representation of dyads to which they are assigned.

Fig. S28 ¹³C NMR signal of PM2-3 and PM2-4 for microstructure analysis

Fig. S29 TGA curves of PM2- ω s at a heating rate of 10 °C min⁻¹

Fig. S30 TGA derivative curves of PM2- ω s at a heating rate of 10 °C min⁻¹