Supplementary Information

Synthesis of AB Block and A₂B₂ and A₃B₃ Miktoarm Star-shaped Copolymers Using ω-End-functionalized Poly(methyl methacrylate) with A Hydroxyl Group Prepared by Organocatalyzed Group Transfer Polymerization

Ofosu-Twum Eric,[†] Yougen Chen,[§] Kenji Takada,[†] Shin-ichiro Sato,^{†‡} Toshifumi Satoh,^{†‡} and Toyoji Kakuchi^{§†‡}*

[†]Graduate School of Chemical Sciences and Engineering, Division of Applied Chemistry, [‡]Faculty of Engineering, and [§]Frontier Chemistry Center, Hokkaido University, Sapporo, 060-8628, Japan.

CORRESPONDING AUTHOR FOOTNOTE

Tel & Fax: +81-11-706-6602 E-mail: kakuchi@poly-bm.eng.hokudai.ac.jp [‡]Hokkaido University

Contents

Experimental Section	
Table S1 ·····	 6
Table S2 ·····	 6
Figure S1	 7
Figure S2 ·····	 7

Experimental Section

Scheme S1. Synthesis of 1-ethoxy-1-(trimethylsiloxy)-2-methylprop-1-ene (SKA_{Et})

Synthesis of 1-ethoxy-1-(trimethylsiloxy)-2-methylprop-1-ene (SKA_{Et}) ¹⁻². Diisopropylamine (11.5 ml, 94.7 mmol) and THF (ca. 50 mL) were added into a 100-mL cock-attached schlenk flask under an argon atmosphere. The mixture was cooled to -78 °C and *n*-butyllithium (59.5 ml, 94.7 mmol, 1.6 M in *n*-hexane) was added. The mixture was then allowed to react for 30 min, after which ethyl isobutyrate (11.5 ml, 86.07 mmol) was added and the reaction was allowed to proceed further for 30 min at -78 °C. Trimethylsilyl chloride (13.1 ml, 0.103 mol) was finally added and the reaction was allowed to react for 6 hours at room temperature. At the end of the reaction, solvent was removed at reduced pressure and product purified by vacuum distillation (58-59 °C, ca. 2.0 kPa) to give SKA_{Et} as a colorless liquid. Yield, 4.1g (25.3%).

NMR Data

Figure S1. ¹H and ¹³C NMR spectra of SKA_{Et} in CDCl₃.

Scheme S2. Synthesis of 4-(3-(trimethylsilyl)prop-2-ynyloxy)benzaldehyde

Synthesis of 4-(3-(Trimethylsilyl)prop-2-ynyloxy)benzaldehyde ³⁻⁶. A 300 mL round bottom flask equipped with a magnetic stir bar was charged with 4hydroxybenzaldehyde (5.00 g, 40.9 mmol), potassium carbonate (22.63 g, 0.164 mol), propargyl bromide (19.48 g, 0.164 mol), and acetone (250 mL). The heterogeneous mixture was heated to reflux for 4h and cooled to room temperature. After addition of water, the mixture was extracted twice with dichloromethane and the combined organic layers were dried over MgSO4. The solvent was removed under reduced pressure to afford the crude product as pale yellow solid. The crude was then purified twice by column chromatography using a mobile phase mixture of hexane: ethyl acetate; 2:1 to afford 2.55 g (39 % yield) of pure product. To a two-neck 100mL round-bottom flask that contained the aldehyde (2.55 g, 15.9 mmol) and silver chloride (0.46 g, 3.18 mmol) dichloromethane was first added 50 mL of dry followed by 1.8diazabicyclo[5.4.0]undec-7-ene (DBU 4.75 mL, 4.85 g, 31.8 mmol). The reaction mixture was then heated under reflux at 40 °C and chlorotrimethylsilane (6.1 mL, 5.2 g, 47.7 mmol) added dropwise, and the contents were stirred for 2 days. The mixture was allowed to cool to ambient temperature and diluted with 150 mL of n-hexane. The organic phase was subsequently washed successively with aqueous NaHCO₃, 2M HCl, and water before being dried over anhydrous MgSO4, filtered, and concentrated under

high vacuum. Beige solids were recovered (2.37 g, 24.9 % yield from the original aldehyde) and the product was used in the next step without further purification.

NMR Data

Figure S2. ¹H NMR spectrum of 4-(3-(Trimethylsilyl)prop-2-ynyloxy)benzaldehyde

Reference

- K. Takada, K. Fuchise, N. Kubota, T. Ito, Y.-G. Chen, T. Satoh, T. Kakuchi, Macromolecules 2014, 47, 5514-5525.
- Z. Zhu, J. Rider, C.-Y. Yang, M. E. Gilmartin, G. E. Wnek, *Macromolecules* 1992, 25, 7330-7333.
- 3. J. B. Giguere, D. Thibeault, F. Cronier, J. S Marois, M. Auger, J. F Morin, *Tetrahedron Letters*, 2009, *50*, 5497-5500.
- 4. J. T. Wiltshire, G. J. Qiao, Polym. Sci., Part A: Polym. Chem., 2009, 47, 1485-1498.
- 5. A. H. Banday, S. A. Shameem, B. D. Gupta, H. M. Sampath, *Steroids* **2010**, *75*, 801-804.
- J. Liu, J Qiu, M. Wang, L. Wang, L. Su, J. Gao, Q. Gu, J. Xu, S. L Huang, L. Q. Gu, Z. S. Huang, D. Li, *Biochimica et Biophysica Acta*, 2014, 1840, 2886-2903.

run	Catalyst	[PhCHO] ₀ /[SKA _{Et}] ₀	$M_{n,calcd} {}^{b}$ (kg mol ⁻¹)	$M_{n,SEC}$ ^c (kg mol ⁻¹)	$M_{n,\text{NMR}} d$ (kg mol ⁻¹)	$M_{ m w}/M_{ m n}$ c	%F ^d
S1	<i>t</i> -Bu-P ₄	1	2.7	3.6	3.2	1.20	12.6
S2	<i>t</i> -Bu-P ₄	2	2.7	3.5	3.3	1.19	30.2
S3	<i>t</i> -Bu-P ₄	5	2.7	4.0	3.6	1.20	82.4
1	<i>t</i> -Bu-P ₄	10	2.7	4.1	3.5	1.23	>99

Table S1. Synthesis of hydroxyl ω -end-functionalized PMMAs by *t*-Bu-P₄-cayalyzed GTP using benzaldehyde (PhCHO) as terminator ^{*a*}

^{*a*} Ar atmosphere; room temperature; Solvent, toluene; $[MMA]_0/[SKA_{Et}]_0$, 25; $[t-Bu-P_4]_0/[SKA_{Et}]_0$, 0.01; Polymerization time, 3 min; $[PhCHO]_0/[SKA_{Et}]_0$, 10; Termination time, 12 h; MMA conversion > 99%. ^{*b*} Calculated from ($[MMA]_0/[SKA_{Et}]_0$) × (MMA conversion) × (M.W. of MMA) + (M.W. of initiator residue) + (M.W. of terminator residue) × %*F*. ^{*c*} Determined by SEC in THF using PMMA standards. ^{*d*} Estimated by ¹H NMR measurements in acetone- d_6 .

Table S2. Syn	thesis of	f ω -end-functionalized	PMMAs	by	<i>t</i> -Bu-P ₄ -cayalyzed	GTP	using	functional
benzaldehyde as	s termina	ator ^a						

run	Terminator (T)	$M_{n,calcd}$ ^b (kg mol ⁻¹)	$M_{n,SEC}$ ^c (kg mol ⁻¹)	$M_{n,\text{NMR}} d$ (kg mol ⁻¹)	$M_{ m w}/M_{ m n}$ c	%F ^d
S4	p-MeO-PhCHO	2.8	3.0	3.0	1.14	>99
S5	p-Ph-PhCHO	2.8	2.8	2.8	1.17	>99
S6	p-F-PhCHO	2.8	2.8	2.7	1.17	>99
S7	<i>p</i> -CF ₃ -PhCHO	2.8	3.0	3.8	1.14	>99
S8	<i>p</i> -H ₂ C=CHCH ₂ O-PhCHO	2.8	3.3	3.2	1.21	>99
S9	<i>p</i> -Me ₃ SiC≡CCH ₂ O-PhCHO	2.8	3.5	3.3	1.17	>99
S10	<i>p</i> -Et ₂ N-PhCHO	2.8	3.5	3.4	1.12	>99
S11	<i>p-t</i> BuO-PhCHO	2.8	3.6	3.8	1.20	>99

^{*a*} Ar atmosphere; room temperature; Solvent, THF; $[MMA]_0/[SKA_{Et}]_0$, 25; $[t-Bu-P_4]_0/[SKA_{Et}]_0$, 0.01; Polymerization time, 3 min; $[T]_0/[SKA_{Et}]_0$, 10; Termination time, 12 h; MMA conversion > 99%. ^{*b*} Calculated from ($[MMA]_0/[SKA_{Et}]_0$) × (MMA conversion) × (M.W. of MMA) + (M.W. of initiator residue) + (M.W. of terminator residue) × %*F*. ^{*c*} Determined by SEC in THF using PMMA standards. ^{*d*} Estimated by ¹H NMR measurements in acetone-*d*₆.

Figure S3. MALDI-TOF MS spectra of trimethylsilyloxy ω -end-functionalized PMMA (precursor of run 6).

Figure S4. SEC traces of (a) hydroxyl-functionalized two-arm PMMA (red) and its precursor (blue) and (b) hydroxyl-functionalized three-arm PMMA (red) and its precursor (blue).