Supporting Information

for

Water-Soluble and Redox-Responsive Hyperbranched Polyether Copolymers Based on

Ferrocenyl Glycidyl Ether

Arda Alkan,^{a,b,†} Rebecca Klein,^{b,c,†} Sergii I. Shylin,^d Ulrike Kemmer-Jonas,^b Holger Frey,^b and

Frederik R. Wurm^{a,*}

^a Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128 Mainz, Germany.

^b Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany. ^c Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany.

^d Institute of Inorganic and Analytic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany.

Additional characterization data.

Figure S2: ¹³C NMR (100 MHz, 298K, DMSO- d_6) of *hb*P[G-*co*-fcGE] copolymers with signal assignments.

Table S1: Relative integrals of the different repeating units determined by inverse gated (IG) ¹³C NMR spectroscopy and used for the calculation of the degree of branching.

no.	sample	L ₁₃	L ₁₄	L _{fcGE}	D	т	DB
P1	hbP[G ₃₇ -co-fcGE _{2.4}]	0.12	0.26	0.06	0.25	0.31	0.54
P2	<i>hb</i> P[G ₃₆ - <i>co</i> -fcGE ₅]	0.11	0.24	0.13	0.27	0.25	0.53
Р3	hbP[G ₆₇ -co-fcGE _{8.2}]	0.12	0.28	0.13	0.25	0.22	0.49
P4	hbP[G ₄₆ -co-fcGE _{6.3}]	0.14	0.33	0.12	0.20	0.21	0.40
Р5	hbP[G ₁₄₀ -co-fcGE ₇]	0.12	0.23	0.06	0.33	0.26	0.62

Figure S3: ¹³C DEPT NMR (100 MHz, 298 K, DMSO-*d*₆) of *hb*P[G₃₆-*co*-fcGE₅] with signal assignments.

Figure S4: SEC traces (DMF, PEG standard) of *hb*P[G-*co*-fcGE] copolymers (P1, P2, P3, P4).

Figure S5: MALDI TOF MS of *hb*P[G₃₆-*co*-fcGE_{5.0}] (P2).

Figure S6: Mößbauer spectrum of the original (i.e. not oxidized) copolymer P3.

Figure S7: Mößbauer spectrum of the fully oxidized copolymer P3.

Figure S8: Cloud point temperature (T_c in °C) plotted against the degree of oxidation (amounts of ferrocenium ions in %).

Figure S9: Cyclic voltammograms of $hbP[G_{37}-co-fcGE_{2.4}]$ (P1) at different scan rates (H₂O, 5 g/L P1, 0.1 M KCl).

Figure S10: Cyclic voltammograms of $hbP[G_{36}-co-fcGE_5]$ (P2) at different scan rates (H₂O, 5 g/L P1, 0.1 M KCI).

Figure S11: Cyclic voltammograms of $hbP[G_{46}-co-fcGE_{6.3}]$ (P4) at different scan rates (H₂O, 5 g/L P1, 0.1 M KCl).