Effect of Fluorine Substitution on the Photovoltaic Performance of Poly(thiophenequinoxaline) Copolymers

Zi Qiao^{1,2}, Meng Wang^{1,2}, Mingzhi Zhao^{1,2}, ZhiGuo Zhang³, Yongfang

Li³*, Xiaoyu Li^{1,2}*, Haiqiao Wang^{1,2}*

1. State Key Laboratory of Organic-Inorganic Composite, Beijing University of

Chemical Technology, Beijing 100029, China

2. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education,

Beijing University of Chemical Technology, Beijing 100029, China

3. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry,

Chinese Academy of Sciences, Beijing 100190, China

Contents:

1. Detailed photovoltaic data.	Table S1
2. DSC thermograms of the polymers	Figure S1
3. TGA plots of the polymers	Figure S2
4. Energy level diagrams	Figure S3
5. UV/Vis absorption spectra of blend films	Figure S4
6. Hole mobility of the polymers	Figure S5

polymer	Ratio ^a	treatment	Voc(V)	Jsc(mA cm- 2)	FF(%)	PCE(%)
PT-QX	1:1	none	0.61	5.81	33.82	1.20
	1:2	none	0.59	5.82	34.49	1.19
	1:3	none	0.58	4.68	38.62	1.05
	1:1.4	none	0.63	6.76	34.58	1.47
	1:1.4	annealing	0.63	6.76	34.58	1.47
	1:1.4	СНЗОН	0.63	7.17	43.17	1.95
	1:1.4	Zracac	0.64	7.41	51.09	2.44
	1:1.4	Zracac、 3%DIO	0.60	9.10	51.79	2.82
PT-FQX	1:1	none	0.62	5.42	49.27	1.67
	1:2	none	0.71	5.62	56.27	2.25
	1:3	none	0.67	5.72	53.48	2.03
	1:1.3	none	0.72	7.53	50.97	2.76
	1:1.3	annealing	0.70	7.34	53.53	2.77
	1:1.3	СНЗОН	0.73	8.60	50.21	3.16
	1:1.3	Zracac	0.73	8.27	54.88	3.31
	1:1.3	Zracac, 3%DIO	0.68	11.05	54.92	4.14
PT-DFQX	1:1	none	0.70	6.87	51.21	2.46
	1:2	none	0.72	6.81	48.69	2.40

Table S1. The detailed photovoltaic data of the optimization process of the PSCs

1:3	none	0.70	6.16	51.40	2.22
1:1.2	none	0.81	9.20	53.29	3.96
1:1.2	annealing	0.77	8.77	58.45	3.96
1:1.2	СНЗОН	0.80	10.49	53.17	4.44
1:1.2	Zracac	0.83	10.80	57.00	5.09
1:1.2	Zracac、 1%DIO	0.77	12.62	53.11	5.19
1:1.2	Zracac, 3%DIO	0.76	13.16	51.90	5.17

^[a]Polymer/PC₇₁BM weight ratio.

Figure S1. The differential scanning calorimetry (DSC) thermograms of the polymers under the protection of nitrogen (heating and cooling rate: $10 \degree C / min$)

Figure S2. TGA plots of the polymers with a heating rate of 10 °C min⁻¹ under a N_2 atmosphere.

Figure S3. Energy level diagrams for the PT-QX (0F), PT-FQX (1F) and PT-DFQX

(2F) based polymers.

Figure S4. UV/Vis absorption spectra of blend films of polymer/PC₇₁BM prepared under the optimal conditions.

Figure S5. Plots of $\ln(JL^3/V^2)$ versus $(V/L)^{0.5}$ for the measurement of the hole mobility in the devices based on polymer/PC₇₁BM by the SCLC method