- Supporting Information -

Thermoplastic polyester elastomers based on long-chain crystallizable aliphatic hard segments

Florian Stempfle, Brigitta Schemmer, Anna-Lena Oechsle and Stefan Mecking*

Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany.

1. Polymer thermal properties and molecular weights

Figure S1. DSC thermograms (second heating) of polyester-polyether copolymers based on PTMG₁₀₀₀.

Figure S2. DSC thermograms (second heating) of polyester-polyether copolymers based on PPDO₂₀₀₀

Figure S3. DSC thermograms (second heating) of polyester-polyether copolymers based on PPDO₁₀₀₀

Figure S4. DSC thermograms (second heating) of polyester-polyether copolymers based on C_{12} monomers

Entry		mol-% polyether diol of total diol	M _n ^a	M_w/M_n^a	T _m b	T _c ^b
			[g mol ⁻¹]		[°C]	[°C]
1	TPE-C ₁₂ PTMG ₂₀₀₀ -62wt%	29% PTMG ₂₀₀₀	5.5 x 10 ⁴	1.9	17/66	1/45
2	TPE-C ₁₂ PPDO ₂₀₀₀ -62wt%	29% PPDO ₂₀₀₀	11.5 x 10 ⁴	2.0	62	38

Table S1. Polyester-polyether copolymers based on dodecanedioic acid and dodecanediol.

^{a)}Determined by GPC in THF at 50 °C *versus* polystyrene standards. ^{b)}Determined by DSC with a heating/cooling rate of 10 K min⁻¹.

2. Tensile testing

Figure S5. Elongation at break of PTMG copolymers (crosshead speed of 50 mm min⁻¹).

Figure S6. Elongation at break of PPDO copolymers (crosshead speed of 500 mm min⁻¹).

Figure S7. Correlation of Young moduli and polymer composition.

Table S2. Mechanical properties of polyester-polyether copolymers based on dodecanedioic acid and dodecanediol.^a

Entry		mol-% polyether diol of total diol	Young modulus ^b	ε _b ¢	€b ^d	Permanent set ^e
			[MPa]	[%]	[%]	[%]
1	TPE-C ₁₂ PTMG ₂₀₀₀ -62wt%	29% PTMG ₂₀₀₀	42	880	-	25
2	TPE-C ₁₂ PPDO ₂₀₀₀ -62wt%	29% PPDO ₂₀₀₀	22	-	240	22

^{a)} Tensile tests following ISO 527/1-2, specimen type 5A prepared by injection molding. ^{b)} Crosshead speed 1 mm/min. ^{c)} Crosshead speed 50 mm/min. ^{d)} Crosshead speed 500 mm/min ^{e)} determined from hysteresis experiments after 10 cycles at an elongation of 100%.

Figure S8. Stress-strain curves of polyester-polyether copolymer TPE-C₂₃PTMG₂₀₀₀-65wt% (dashed line) and TPE-C₁₂PTMG₂₀₀₀-62wt% (solid line).

Figure S9. Stress-strain curves of polyester-polyether copolymer TPE-C₂₃PPDO₂₀₀₀-65wt% (dashed line) and TPE-C₁₂PPDO₂₀₀₀-62wt% (solid line).

4. Cyclic hysteresis tests

For preliminary shape recovery tests rectangular specimens (length × width × thickness = $60 \times 10 \times 1 \text{ mm}^3$) of polyester-polyether copolymer TPE-C₂₃PTMG₂₀₀₀-65wt%, prepared via injection molding, were repeatedly exposed to a constant stress of about 5.6 MPa or extended to a defined elongation of ca. 80 % (c.f. **Figure S11**).

Figure S10. Shape recovery tests of polyester-polyether copolymer TPE- C_{23} PTMG₂₀₀₀-65wt%.

Figure S11. Shape recovery tests on polyester-polyether copolymer TPE- C_{23} PTMG₂₀₀₀-65wt% applying constant stress of about 5.6 MPa (left) and a constant elongation of ca. 80 % (right) (for clarity only every second cycle is displayed).

Cyclic hysteresis tests on dogbone-shaped sample bars ($75 \times 12.5 \times 2 \text{ mm3}$; ISO 527-2, type 5A) of polyester-polyether copolymers were performed on a Zwick 1446 Retroline tC II instrument. The test specimens were repeatedly exposed to consecutive cycles of loading and unloading to a constant strain of 100 % with a constant crosshead speed of 50 mm min⁻¹. The recovery was measured by observing the residual strain after 10 cycles.

Figure S12. Stress-strain curves from cyclic tensile tests with a constant strain of 100 % for polyester-polyether copolymer TPE-C₂₃PTMG₂₀₀₀-65wt% (red) and TPE-C₁₂PTMG₂₀₀₀-62wt% (green) (10 cycles are displayed).

Figure S13. Stress-strain curves from cyclic tensile tests with a constant strain of 100 % for polyester-polyether copolymer TPE-C₂₃PPDO₂₀₀₀-65wt% (red) and TPE-C₁₂PPDO₂₀₀₀-62wt% (green) (10 cycles are displayed).

Figure S14. Block lengths distributions expressed on C_{12} -basis for copolyester of C_{24} dicarboxylic acid with C_{24} diol and 25 mol% polyether (black) and for copolyester of C_{12} dicarboxylic acid with C_{12} diol and 14.3 mol% polyether (red), i.e. isolated acid repeat unit: n = 1 (C_{12}) and n = 2 (C_{24}); acid- aliph. diol-acid: n = 3 (C_{12}) and n = 6 (C_{24}) etc.

6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 fl (ppm)

Figure S15. ¹H NMR (C₂D₂Cl₂, 130°C) of TPE-C₂₃PTMG₂₀₀₀-65wt%

Figure S16. ¹H NMR (CDCl₃, 25°C) of TPE-C₂₃PPDO₂₀₀₀-65wt%