Electronic Supplementary Information

Synthesis of Catechol and Zwitterion-Bifunctionalized Poly(ethylene glycol) for the Construction of Antifouling Surfaces

> Li Qun Xu¹, Dicky Pranantyo¹, Koon-Gee Neoh¹, En-Tang Kang^{1*}, Serena Lay-Ming Teo^{2*}, Guo Dong Fu³

¹ Department of Chemical & Biomolecular Engineering National University of Singapore Kent Ridge, Singapore 117576

> ² Tropical Marine Science Institute National University of Singapore Kent Ridge, Singapore 119223

³ School of Chemistry and Chemical Engineering Southeast University Jiangning District, Nanjing, Jiangsu Province, P.R. China 211189

* To whom correspondence should be addressed: E-mails: cheket@nus.edu.sg (ETK); tmsteolm@nus.edu.sg (SLMT)

Figure S1. Water contact angle images of the pristine and polymer-coated SS, Si and Ti substrate surfaces.

Figure S2. XPS wide-scan spectra of the (a) SS-CaPEG and (b) SS-SBCaPEG surfaces after immersion in artificial seawater for four weeks.

Figure S3. ζ potential of polymer-coated SS surfaces as a function of pH.

Figure S4. Extent of FBG adsorption, expressed as XPS-derived surface [N]/[C] ratios, on the pristine SS, SS-CaPEG and SS-SBCaPEG surfaces.

Figure S5. The adhered *E. coli* cells on the SS-CaPEG, SS-(CaPEG-SBCaPEG) and SS-SBCaPEG surfaces, relative to that on the pristine SS surface, after exposure to the *E. coli* suspension in PBS (5×10^7 cells/mL) for 4 h.

Figure S6. Relative cell viability of 3T3 fibroblasts after 24 h of culturing in DMEM medium pretreated with the SS-CaPEG and SS-SBCaPEG surfaces for 1, 4 and 7 days.