Electronic supplementary information for

Effects of Rigid Core and Flexible Tails on the Phase Behaviors of Polynorbornene-Based Mesogen-Jacketed Liquid Crystalline Polymers

Zhen-Yu Zhang, Qian Wang, Ping-Ping Hou, Zhihao Shen,* and Xing-He Fan*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China

* To whom the correspondence should be addressed. E-mail: fanxh@pku.edu.cn (X.-H.F.); zshen@pku.edu.cn (Z.S.).

Table of Contents

1	Synthesis of M-1, M-2, and M-3	S2-S3
2	Synthesis of NbTpC16, NbTpC8, NbTpC12, NbFpC16, and NbFpC10,6	S3-S4
3	¹ H NMR spectra of monomers in CDCl ₃	S5-S11
4	TGA curves of all polymers	S11
5	DSC traces of PNbTpC8 and PNbTpC16	S12
6	PLM micrographs of PNbTpC12 and PNbTpC16	S12
7	1D WAXD results of PNbTpC12	S13
8	2D WAXD results of PNbTpC12 and PNbFpC10,6	S13

Synthesis of 2'-amino-(4',4"-bis(p-carboxylate)-terphenyl) (M-1)

2,5-Dibromoaniline (5.00 g, 19.9 mmol), 4-(methoxycarbonyl) phenylboronic (14.4 g, 80.0 mmol), and Pd(PPh₃)₄ (2.30 g, 1.99 mmol) were dissolved in the mixed solvent of 80 mL of H₂O and 40 mL of THF in a 250 mL round-bottomed flask. The mixture was refluxed under a nitrogen atmosphere at 80 °C for 24 h. After the mixture was cooled to ambient temperature, THF was removed by rotary evaporation, and the remaining mixture was extracted three times with 50 mL of CH₂Cl₂. The organic layers were combined and dried by MgSO₄. The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (silica gel, CH₂Cl₂), resulting in 2.10 g of a light yellow solid. Yield: 29%. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 8.14 (d, 2H), 8.12 (d, 2H), 7.67 (d, 2H), 7.60 (d, 2H), 7.23 (d, 1H), 7.10 (dd, 1H), 7.03 (d, 1H), 7.10 (dd, 1H), 3.96 (s, 3H), 3.95 (s, 3H).

Synthesis of 2'-amino-(4',4"-bis(p-dicarboxylic acid)-terphenyl) (M-2)

M-1 (2.10 g, 5.80 mmol) and NaOH (11.6 g, 290 mmol) were dissolved in the mixed solvent of 50 mL of dioxane and 20 mL of H₂O, and the mixture was refluxed at 100 °C overnight. After the mixture was cooled to ambient temperature, the solvent was removed by rotary evaporation. The residue was dissolved in water. A dilute hydrochloric acid solution was added until the pH of the mixture was about 2, and a light yellow solid appeared. After filtration and drying under an infrared lamp, the product was obtained as a light yellow powder. Yield: 90%. ¹H NMR (400 MHz, DMSO, δ , ppm): 8.05 (m, 4H), 7.79 (d, 2H), 7.69 (d, 2H), 7.60 (d, 2H), 7.57 (s, 1H), 7.45 (d, 1H), 7.38 (d, 1H).

Synthesis of *N*-(4',4"-bis(*p*-carboxylphenyl)-terphenyl)-2'-*cis*-5-norbornene-*exo*-2,3dicarboximide (NbTpA, M-3)

cis-5-Norbornene-*exo*-2,3-dicarboxylic anhydride (0.800 g, 4.90 mmol) and glacial acetic acid (30.0 mL) were charged in a 100 mL round-bottomed flask. **M-2** (0.500 g, 1.50 mmol) was added to the reaction mixture at 120 °C in about 30 min. Then the reaction mixture was refluxed

for 12 h. After being cooled to ambient temperature, the mixture was poured into cold water (~150 mL) and vigorously stirred for 2 h. After filtration and drying under an infrared lamp, the product was obtained as a white powder. Yield: 80%. ¹H NMR (400 MHz, DMSO, δ , ppm): 13.00 (s, 2H), 8.06 (t, 2H), 7.96 (m, 4H), 7.86 (d, 2H), 7.70 (m, 2H), 7.55 (d, 2H). 7.34 (t, 2H), 2.94 (s, 2H), 2.74 (d, 2H), MS (HR-ESI): [M–H]⁻/z, Calcd 479.2; Found 478.2.

Synthesis of NbTpCn

NbTpC16. 1-Bromohexadecane (1.00 g, 3.30 mmol), NbTpA (0.200 g, 0.600 mmol), and KHCO₃ (0.300 g, 3.00 mmol) were dissolved in 50 mL of *N*,*N*-dimethylformamide (DMF), and the mixture was refluxed at 100 °C for 24 h. After being cooled to ambient temperature, the mixture was poured into cold water. Then the solution was extracted three times with 50 mL of dichloromethane (CH₂Cl₂). The organic layers were combined and dried by MgSO₄. The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (silica gel, CH₂Cl₂), resulting in 0.200 g of a white powder. Yield: 61%. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 8.03–8.12 (m, 4H), 7.79–7.66 (m, 3H), 7.38–7.58 (m, 4H), 6.20–6.28 (d, 2H), 4.43 (m, 4H), 3.08–3.35 (d, 2H), 2.61–2.74 (d, 2H), 1.77 (m, 4H), 1.26–1.54 (m, 54H), 0.88 (t, 6H). MS (HR–ESI): [M + H]⁻/z, Calcd 815.5; Found 816.5. Anal. Calcd for C₆₁H₈₅NO₆: C, 78.92; H, 9.23; N, 1.51. Found: C, 78.81; H, 9.29; N, 1.58.

NbFpC8. NbTpC8 was a colorless liquid prepared from **M-3** and 1-bromooctane. Yield: 50%. ¹H NMR (400 MHz, CDCl₃, *δ*, ppm): 8.04–8.12 (m, 4H), 7.67–7.77 (m, 3H), 7.36–7.4 (m, 4H), 6.21–6.27 (d, 2H), 4.32 (m, 4H), 3.08–3.35 (d, 2H), 2.61–2.75 (d, 2H), 1.77 (m, 4H), 1.29–1.79 (m, 22H), 0.89 (m, 6H). MS (HR-ESI): [M + H]⁻/z, Calcd 703.4; Found 704.4.

NbFpC12. NbTpC12 was a colorless liquid prepared from **M-3** and 1-bromododecane. Yield: 55%. ¹H NMR (400 MHz, CDCl₃, δ, ppm): 8.03–8.11 (m, 4H), 7.69–7.75 (m, 3H), 7.36–7.57 (m, 4H), 6.20–6.28 (d, 2H), 4.32 (m, 4H), 3.08–3.35 (d, 2H), 2.61–2.74 (d, 2H), 1.77 (m, 4H), 1.27–1.62 (m, 38H), 0.88 (t, 6H). MS (HR–ESI): [M + H]⁻/z, Calcd 815.5; Found 816.5.

Synthesis of NbFpC16 and NbFpC10,6

NbFpC16. C16-OH (0.500 g, 1.500 mmol), NbTpA (0.200 g, 0.600 mmol), *N*,*N*diisopropylcarbodiimide (DIC, 0.200 g, 1.50 mmol), and 4-(dimethylamino)pyridine (DMAP, 0.0200 g, 0.160 mmol) were dissolved in CH₂Cl₂ (50.0 mL) in a 100 mL round-bottomed flask and stirred at ambient temperature for 24 h. After the solvent was evaporated., the crude product was purified by silica gel column chromatography with CH₂Cl₂ and subsequent recrystallization from methanol. Yield: 60%. ¹H NMR (400 MHz, CDCl₃, δ , ppm): 8.12–8.20 (m, 4H), 7.68–7.73 (m, 3H), 7.03–7.09 (m, 4H), 6.85–6.89 (m, 4H), 6,16–6.23 (d, 2H), 3.89 (m, 4H), 3.06–3.30 (d, 1H), 2.58–2.71 (d, 1H), 1.72 (m, 4H), 1.20–1.40 (m, 52H), 0.81 (t, 6H). MS (HR-ESI): [M + H]⁻/z, Calcd 1111.7; Found 1112.7. Anal. Calcd for C₇₉H₉₃NO₈: C, 78.81; H, 8.43; N, 1.26. Found: C, 78.81; H, 8.39; N, 1.32.

NbFpC10,6. NbFpC10,6 was prepared from NbTpA and C10,6-OH. Yield: 50%. ¹H NMR (400 MHz, CDCl₃, *δ*, ppm): 8.19–8.29 (m, 4H), 7.75–7.81 (m, 3H), 7.43–7.62 (m, 4H), 7.13 (m, 4H), 6,96 (d, 4H), 6.23–6.29 (d, 2H), 3.84 (m, 4H), 3.13–3.37 (d, 1H), 2.65–2.78 (d, 1H), 1.29–1.78 (m, 50H), 0.89 (m, 6H). MS (HR-ESI): [M + H]⁻/z, Calcd 1111.7; Found 1112.7. Anal. Calcd for C₇₉H₉₃NO₈: C, 78.81; H, 8.43; N, 1.26. Found: C, 79.01; H, 8.49; N, 1.22.

Fig. S1 ¹H NMR spectrum of **M-1** in CDCl₃.

Fig. S2 ¹H NMR spectrum of **M-2** in CDCl₃.

Fig. S3 ¹H NMR spectrum of **M-3** in CDCl₃.

Fig. S4 ¹H NMR spectra of NbTpC8 (top) and PNbTpC8 (bottom) in CDCl₃.

Fig. S5 ¹H NMR spectra of NbTpC12 (top) and PNbTpC12 (bottom) in CDCl₃.

Fig. S6 ¹H NMR spectra of NbTpC16 (top) and PNbTpC16 (bottom) in CDCl₃.

Fig. S7 ¹H NMR spectra of NbFpC10,6 (top) and PNbFpC10,6 (bottom) in CDCl₃.

Fig. S8 TGA curves of all polymers at a heating rate of 20 °C min⁻¹ under a nitrogen atmosphere.

Fig. S9 DSC traces of PNbTpC8 (a) and PNbTpC16 (b) during the first cooling processes at a rate of 3 °C min⁻¹ and the second heating processes at a rate of 20 °C min⁻¹ under a nitrogen atmosphere.

Fig. S10 PLM micrographs of PNbTpC12 (a) and PNbTpC16 (b) at 150 °C.

Fig. S11 1D WAXD profiles of PNbFpC12 during the first heating (a) and subsequent cooling (b) processes.

Fig. S12 2D WAXD patterns of PNbTpC12 with the X-ray beam perpendicular (a) and parallel (b) to the shear direction, those of PNbFpC10,6 with the X-ray beam perpendicular (c) and parallel (d) to the shear direction, and the shear geometry (e).