Supplementary Information

Energetic Polymeric Network Prepared via a Solvent- and Catalyst-Free Thermal Cycloaddition of Azide-Bearing Polymer with Alkynes and Hydroxyl-isocyanate Addition Reactions

Byoung Sun Min ${ }^{\text {a, }}$, Heung Bae Jeon ${ }^{\text {c }}$, Tae Uk Jeong ${ }^{\text {a }}$, Sang Youl Kim ${ }^{\text {a* }}$

${ }^{a}$ Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
${ }^{b} 4$-R\&D Institute, Rocket Propulsion Directorate, Agency for Defense Development, Yuseong P.O. Box 35-5, Daejeon 305-600, Korea
${ }^{\text {c }}$ Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-gu, Seoul, 139-701, Korea.

1. Synthesis of dipolarophiles with terminal alkynes

Dipolarophile $\mathbf{1 ~ 2}^{\sim} \mathbf{2}$ and 3, $\mathbf{5}$ were synthesized and used, as described previously. ${ }^{1}$

1,1,1-Tris[(propioloyloxy)methyl]propane 4

To a solution of 1,1,1-tris(hydroxymethyl)propane ($20.0 \mathrm{~g}, 0.149 \mathrm{~mol}$) and propiolic acid ($41.8 \mathrm{~g}, 0.597 \mathrm{~mol}$) in benzene (800 mL) was added p-Toluenesulfonic acid (p - $\mathrm{TsOH}, 3.00 \mathrm{~g}, 0.015 \mathrm{~mol}$). The mixture was heated up to $100^{\circ} \mathrm{C}$ for 2 days using a Dean-Stark trap to eliminate $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was concentrated in vacuo and the residue was subjected to column chromatography with EtOAc-hexane (1/1) as the eluent to obtain the desired product in a 35% yield: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ ($\mathrm{s}, 3 \mathrm{H}$), $4.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.2,22.7,40.6,65.1,74.0,75.6,152.1$.

1,3,5-Tripropargyloxybenzene 6

Propargyl bromide ($53.5 \mathrm{~g}, 0.450 \mathrm{~mol}$) was added to a solution of phloroglucinol ($14.0 \mathrm{~g}, 0.111 \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(62.14 \mathrm{~g}, 0.450 \mathrm{~mol})$ in DMF $(200 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 4 days and then concentrated in a vacuum. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in a vacuum. The residue was subjected to column chromatography with EtOAc-hexanes (1/8) as an eluent to obtain the desired product in 65% yield: ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.52(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 6.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.9,75.7,78.2,95.4,159.3$.

2,4,6-Tripropargyloxy-1,3,5-triazine 7

Propargyl alcohol ($18.7 \mathrm{~g}, 0.334 \mathrm{~mol}$) was added slowly to a solution of cyanuric chloride ($15.4 \mathrm{~g}, 0.085 \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(36.4 \mathrm{~g}, 0.263$ $\mathrm{mol})$ in DMF (100 mL). The resulting solution was stirred at room temperature for 2 days and then concentrated in a vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with dilute 10% citric acid, and washed with
saturated brine. Then, it was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuum. To the residue was added $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the solid which was not dissolved in $\mathrm{Et}_{2} \mathrm{O}$ was filtered off. The filtrate was concentrated in a vacuum to obtain the desired product in 71% yield: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.51(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.9,56.9,75.9,172.4$.

1,1,1,-Tris[(propargyloxy)methyl]propane 8

Propargyl bromide ($59.5 \mathrm{~g}, 0.500 \mathrm{~mol}$) was added to a solution of 1,1,1-tris(hydroxymethyl)propane ($13.4 \mathrm{~g}, 0.100 \mathrm{~mol}$) and $\mathrm{KOH}(57.0 \mathrm{~g}$, $1.02 \mathrm{~mol})$ in DMSO $(300 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 2 days. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in a vacuum. The residue was subjected to column chromatography with EtOAc-hexanes ($1 / 30$) as an eluent to obtain the desired product in 58% yield: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.86(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 6 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.5$, $22.7,42.8,58.6,70.3,74.0,80.1$.
2. Stress-strain curves of the azide-bearing networkscrosslinked via triazole moieties or both triazole and urethane moieties.

Fig. S1 Stress-strain curves of azide-bearing networks crosslinked via triazole moieties depending on the kind of dipolarophiles.

Fig. S2 Stress-strain curves of azide-bearing networks crosslinked via both triazole moieties and urethane moieties depending on the kind of dipolarophiles.
3. Gaussian calculations

6

7

8

Table S1. Calculated Orbital Energies (B3LYP/6-31G*)(kcal/mol)

Dipole	HOMO	LUMO
Azide	-159.48	-17.28
Dipolarophile	HOMO	LUMO
1	-172.3	-1.36
2	-149.45	-9.19
3	-180.68	-33.23
4	-178.65	-36.53
6	-137.1	8.1
7	-171.54	-12.84
8	-157	-16.37

Azide model compound

Alpha occ. eigenvalues -- -0.25414
$\begin{array}{lllllll}\text { Alpha virt. eigenvalues -- } & -0.02754 & 0.01176 & 0.08526 & 0.09895 & 0.12564\end{array}$

Dipolarophile 1

Alpha occ. eigenvalues -- -0.27457
$\begin{array}{lllllll} & \text { Alpha virt. eigenvalues -- } & -0.00217 & 0.00828 & 0.01910 & 0.02259 & 0.04577\end{array}$

Dipolarophile 2

$\begin{array}{llllllll}\text { Alpha occ. eigenvalues -- } & -0.26868 & -0.26791 & -0.24776 & -0.23816 & \\ \text { Alpha virt. eigenvalues -- } & -0.01465 & -0.00169 & 0.03006 & 0.04290 & 0.04750\end{array}$

Dipolarophile 3

Alpha occ. eigenvalues -- -0.30564-0.28846-0.28793
$\begin{array}{llllllll}\text { Alpha virt. eigenvalues -- } & -0.05295 & -0.05097 & 0.01899 & 0.02633 & 0.08864\end{array}$

Dipolarophile 4

Alpha occ. eigenvalues -- -0.28470
$\begin{array}{lllllll} & \text { Alpha virt. eigenvalues -- } & -0.05821 & -0.05776 & -0.05428 & 0.01362 & 0.01499\end{array}$

Dipolarophile 6

Alpha occ. eigenvalues -- -0.26917-0.21851-0.21849
$\begin{array}{lllllll}\text { Alpha virt. eigenvalues -- } & 0.01291 & 0.01293 & 0.02409 & 0.02650 & 0.02651\end{array}$

Dipolarophile 7

Alpha occ. eigenvalues -- -0.27566 -0.27339 -0.27337
Alpha virt. eigenvalues -- -0.02046 -0.02045 0.019720 .021290 .02132

Journal Name

ARTICLE

Dipolarophile 8

Alpha occ. eigenvalues -- -0.25728-0.25019

Alpha virt. eigenvalues -- $0.02609 \quad 0.03430 \quad 0.03508 \quad 0.05468 \quad 0.05578$

1. References

1 B.S. Min, Y. C. Park and J.C. Yoo, Propellants, Explos. Pyrotech,. 2012, 37, 59; D. H. Lee, K. T. Kim, Y. Jang, S. Lee, H. B. Jeon, H. J. Paik, B. S. Min and W. Kim, J. App. Polym. Sci., 2014, 131, 40594.

