ELECTRONIC SUPPORTING INFORMATION

Multifaceted Glycodendrimers With Programmable Bioactivity Through Convergent, Divergent, and Accelerated Approaches Using Polyfunctional Cyclotriphosphazenes

Leïla Abbassi, ${ }^{a}$ Yoann M. Chabre, ${ }^{* a}$ Kottari Naresh, ${ }^{a}$ Alexandre A. Arnold, ${ }^{a}$ Sabine André, ${ }^{b}$ Johan Josserand, ${ }^{a}$ HansJoachim Gabius, ${ }^{\text {b }}$ and René Roy*a
${ }^{\text {a }}$ Pharmaqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, CANADA. Fax: +1-514-987-4054; Tel: +1-514-987-3000 ext 2546; E-mail: chabre.yoann@uqam.ca ; roy.rene@uqam.ca
${ }^{\mathrm{b}}$ Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany

Contents

1. Materials and Methods S2
2. Synthetic protocols, Characterization, NMR, IR spectra, Mass, GPC, DLS traces S4
3. Diffusion NMR experiments S182
4. Competitive Surface Plasmon Resonance Studies and Sensorgrams S185
5. X-Ray crystallographic analysis S195

1. Materials and methods

All reactions in organic medium were performed in standard oven dried glassware under an inert atmosphere of nitrogen using freshly distilled solvents. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and DMF from ninhydrin, and kept over molecular sieves. Solvents and reagents were deoxygenated when necessary by purging with nitrogen. Water used for lyophilization of final dendrimers was nanopure grade, purified through Barnstead NANOPure II Filter with Barnstead MegOhm-CM Sybron meter. All reagents were used as supplied without prior purification unless otherwise stated, and obtained from Sigma-Aldrich Chemical Co. Ltd.

LecA (Pseudomonas aeruginosa lectin-I) was purchased from Sigma-Aldrich (L9895-1MG, Lot 051M4011V).

Reactions were monitored by analytical thin-layer chromatography using silica gel 60 F254 precoated plates (E. Merck) and compounds were visualized by 254 nm light, a mixture of lodine/silica gel and/or mixture of Ceric Ammonium Molybdate solution ($\left.100 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}, 900 \mathrm{ml} \mathrm{H} \mathrm{H}, 25 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~g} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}\right)$ and subsequent development by gentle warming with a heat-gun. Purifications were performed by flash column chromatography using silica gel from Silicycle ($60 \AA$ A , 40-63 $\mu \mathrm{m}$) with the indicated eluent.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 or 600 MHz and 75 or 150 MHz , respectively, on a Bruker spectrometer $(300 \mathrm{MHz})$ and Varian spectrometer (600 MHz). All NMR spectra were measured at $25^{\circ} \mathrm{C}$ in ind icated deuterated solvents. Proton and carbon chemical shifts (δ) are reported in ppm and coupling constants (J) are reported in Hertz (Hz). The resonance multiplicities in the ${ }^{1} \mathrm{H}$ NMR spectra are described as "s" (singlet), "d" (doublet), "t" (triplet), "quint" (quintuplet) and "m" (multiplet) and broad resonances are indicated by "br". Residual protic solvent of $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.27 \mathrm{ppm} ;{ }^{13} \mathrm{C}, \delta 77.0 \mathrm{ppm}\right.$ (central resonance of the triplet)), $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}, \delta 4.79 \mathrm{ppm}\right.$ and 30.9 ppm for CH_{3} of Acetone for ${ }^{13} \mathrm{C}$ spectra of de-O-acetylated compounds), MeOD (${ }^{1} \mathrm{H}, \delta 3.31 \mathrm{ppm}$ and ${ }^{13} \mathrm{C}, \delta 49.0 \mathrm{ppm} .2 \mathrm{D}$ Homonuclear correlation ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and Heteronuclear correlation ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HETCOR experiments were used to confirm NMR peak assignments. Characteristic signals of protected and deprotected peripheric lactosides at the glycodendrimers' periphery were assigned in comparison with corresponding monovalent reference previously described. ${ }^{1}$ 2D Gel Permeation Chromatography (GPC) was performed using THF or $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)$ as the eluent, at $40^{\circ} \mathrm{C}$ with a $1 \mathrm{~mL} / \mathrm{min}$ flow rate on a Viscotek VE 2001 GPCmax (SEC System) with Wyatt DSP/Dawn EOS and refractive index RI/LS system as detectors. 2 PLGel mixed B LS ($10 \mu \mathrm{~m}, 300 \times 7.5 \mathrm{~mm}$) and LS-MALLS detection with performances verified with polystyrene 100 kDa and 2000 kDa were used to determine the number-average molecular weight $\left(M_{n}\right)$ and polydispersity index $\left(M_{W} / M_{n}\right)$. Calculations were performed with Zimm Plot (model). Fourier transform infrared (FTIR) spectra were obtained with Thermo-scientific, Nicolet model 6700 equipped with ATR. The absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. The intensity of the bands is described as s (strong), m (medium) or w (weak). Melting points were measured on a Electrothermal MEL-TEMP apparatus and are uncorrected.

Accurate mass measurements (HRMS) were performed on a LC-MSD-TOF instrument from Agilent Technologies in positive electrospray mode. Low-resolution mass spectra were performed on the same apparatus or on a LCQ

[^0]Advantage ion trap instrument from Thermo Fisher Scientific in positive electrospray mode (Mass Spectrometry Laboratory (Université de Montréal), or Plateforme analytique pour molécules organiques (Université du Québec à Montréal), Québec, Canada). Either protonated molecular ions $[M+n H]^{n+}$ or adducts $[M+n X]^{n+}\left(X=N a, K, \mathrm{NH}_{4}\right)$ were used for empirical formula confirmation. MALDI-TOF analyses were performed in either reflectron or linear mode on an Ultraflextreme TOF/TOF instrument from Bruker Daltonics. Mass spectra were acquired over the appropriate mass range for every particular sample. Each mass spectrum represents the sum of minimum 1000 laser shots. Samples were solubilized in either dichloromethane or water to an approximate final concentration of $6 \mathrm{mg} / \mathrm{mL}$. Dithranol and DHB at $10 \mathrm{mg} / \mathrm{mL}$ in methanol containing 0.1% TFA were used as matrices while NaTFA at $2 \mathrm{mg} / \mathrm{mL}$ in methanol was used as ionizing agent. A mixture of 20 uL matrix, 20 uL sample and 10 uL ionizing agent was prepared in a 600 uL Eppendorf tube. Aliquots of 1 uL of the above solution were applied on the MALDI plate and allowed to dry. All solvents for Mass Analyses (Water, Dichlorometane, Methanol and Acetonitrile) were HPLC grade, from de J.T. Baker (Phillipsburg, NJ). Sodium trifluoroacetate (NaTFA), dithranol andtrifluoroacetic (TFA) acid were from Sigma (St Louis, MO) while DHB was from Bruker Daltonics (Billerica, MA).

2. Synthetic protocols, Characterization, NMR, IR spectra, Mass, GPC, DLS traces

Hexapropargylated cyclotriphosphazene 1

Hexachlorophosphazene $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6}$ (freshly recrystallized from Hexanes, $29.3 \mathrm{mg}, 84.4 \mu \mathrm{~mol}$, 1.0 eq.) and 4propargyloxyphenol 4^{2} ($150.0 \mathrm{mg}, 1.010 \mathrm{mmol}, 12.0$ eq.) were dissolved in 4 mL of anhydrous THF. Under nitrogen atmosphere, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(620.0 \mathrm{mg}, 1.900 \mathrm{mmol}, 22.5 \mathrm{eq}$.) was added and the mixture was stirred at reflux temperature $\left(66^{\circ} \mathrm{C}\right)$ for 18 hours. The solution was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. Column chromatography on silica (EtOAc/Hexanes 10:90 to 70:30) afforded the desired compound 1 (71.1 $\mathrm{mg}, 69.9 \mu \mathrm{~mol}, \mathbf{8 3 \%}$) as a white solid.

Crystallization conditions: 130 mg of amorphous 1 (white solid) are dissolved in a $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}_{\text {abs. }}$ mixture ($5 \mathrm{~mL} / 1.5$ mL) at room temperature and 6 mL of Hexanes are added. The mixture containing the resulting white precipitate was refluxing at $75^{\circ} \mathrm{C}$ for 30 minutes (total dissolution was observed at $65^{\circ} \mathrm{C}$). After gentle cooling, colorless plates were obtained at room temperature.
$\mathbf{R}_{\mathbf{f}}=0.23$, EtOAc/Hexanes 35:65.
m.p. $=64^{\circ} \mathrm{C}$ (recryst. from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}_{\text {abs }} /$ Hexanes (5:1.5:6)).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 6.81 (dd, $24 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}$), 4.65 (d, 12H,J=2.4 Hz; OCH2C三CH), 2.54 (t, 6H, J=2.4 Hz; OCH ${ }_{2} \mathrm{C} \equiv \mathrm{CH}$).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 154.5\left(C_{\mathrm{a}}\right), 144.8\left(C_{\mathrm{d}}\right), 121.8\left(C_{\mathrm{c}}\right), 115.5\left(C_{\mathrm{b}}\right), 78.5(\mathrm{C} \equiv \mathrm{CH}), 75.7(\mathrm{C} \equiv C \mathrm{H}), 56.1$ $\left(\mathrm{OCH}_{2}\right)$.
${ }^{31}$ P NMR (122 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.9$ (s, 3P).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-MS) for $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3}=1017.9$; found 1017.2
(ESI ${ }^{+}$HRMS) 1018.20541 $[M+H]^{+}$; found 1018.20476; 1040.18735 [M+Na] ${ }^{+}$; found 1040.18735.

[^1]

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S2. gCOSY spectrum of compound 1

Figure $\mathrm{S3} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S4. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Calc. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C54H43N3O12P3	12710	1018.20476	1018.20541	-0.64
$(\mathrm{M}+\mathrm{Na})+$	C54H42N3NaO12P3	3279	1040.18739	1040.18735	0.03

Figure S5. Mass spectrometry of compound 1 (up: MALDI-TOF MS and bottom: ESI ${ }^{+}$-HRMS)

Compound 3

Hexachlorophosphazene (freshly recrystallized from Hexanes, $1.200 \mathrm{~g}, 3.450 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and NBoc-protected p aminophenol derivative $2^{3}(361.0 \mathrm{mg}, 1.725 \mathrm{mmol}, 1.0$ eq.) were dissolved in 125 mL of anhydrous THF. Under nitrogen atmosphere, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($2.810 \mathrm{~g}, 8.630 \mathrm{mmol}, 5.0$ eq.) was added and the mixture was stirred at reflux temperature $\left(66^{\circ}\right.$) for 24 hours. The solution was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. Column chromatography on silica (DCM/Hexanes 10:90 to 70:30) afforded the desired compound 3 ($538.0 \mathrm{mg}, 1.034 \mathrm{mmol}, \mathbf{6 0 \%}$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.61, \mathrm{EtOAc} /$ Hexanes 20:80.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.40\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{b}\right), 7.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{c}\right), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 1.52 (s, 9H, CH_{3}).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $152.5(C=O), 144.4\left(C_{\mathrm{d}}, \mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=10.4 \mathrm{~Hz}\right), 137.0\left(C_{\mathrm{a}}, \mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=2.7 \mathrm{~Hz}\right), 121.8\left(C_{\mathrm{b}}\right.$, $\left.\mathrm{d}, J_{\mathrm{P}-\mathrm{c}}=5.0 \mathrm{~Hz}\right), 119.5\left(\mathrm{C}_{\mathrm{c}}\right), 80.9\left(\mathrm{C}_{\mathrm{q}}\right), 28.3\left(\mathrm{CH}_{3}\right)$.
${ }^{31}$ P NMR (122 MHz, CDCl $\left.{ }_{3}, \delta \mathrm{ppm}\right): 22.4\left(\mathrm{~d}, 2 \mathrm{P},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{P})=59.3 \mathrm{~Hz}, \mathrm{PCl}_{2}\right), 12.8\left(\mathrm{t}, 1 \mathrm{P},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{P})=59.3 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{P}-\mathrm{O}\right)$. $\boldsymbol{m} / \mathbf{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{5} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{3}=540.8614[\mathrm{M}+\mathrm{Na}]^{+}$; found 540.8628 .

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

[^2]

Figure $\mathbf{S 7} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S8. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$
MS Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe, m / z	Calc, m / z	Diff(ppm)
$(\mathrm{M}+\mathrm{Na})+$	$\mathrm{C} 11 \mathrm{H} 14 \mathrm{Cl} 5 \mathrm{~N} 4 \mathrm{NaO3P3}$	366441.2	540.86277	540.86136	2.61

Figure S9. ESI ${ }^{+}$-HRMS spectrum of compound 3

Compound 5

Monofunctionalized derivative $3(50.0 \mathrm{mg}, 0.0961 \mathrm{mmol}, 1.0$ eq.) and 4-propargyloxyphenol 4 (113.9 mg, 0.7690 mmol, 8.0 eq.) were dissolved in 8 mL of anhydrous THF. Under nitrogen atmosphere, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.50 \mathrm{~g}, 4.81 \mathrm{mmol}$, 48.0 eq.) was added and the mixture was stirred at reflux temperature $\left(66^{\circ} \mathrm{C}\right)$ for 6 hours. The solution was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. Column chromatography on silica (EtOAc/Hexanes 10:90 to $35: 65$) afforded the desired compound 5 ($88.0 \mathrm{mg}, 0.0816 \mathrm{mmol}, 87 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.36$, EtOAc/Hexanes 35:65.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{b^{\prime}}\right), 6.87-6.76\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}^{\prime}}\right), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH), $4.65\left(\mathrm{t}_{\text {app }}, 10 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.55\left(\mathrm{t}_{\text {app }}, 5 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 154.4\left(C_{\mathrm{a}}\right)$, $152.6(C=\mathrm{O}), 145.8\left(C_{\mathrm{d}^{\prime}}\right), 144.7\left(C_{\mathrm{d}}\right), 135.1\left(C_{\mathrm{a}^{\prime}}\right), 121.8\left(C_{\mathrm{c}}\right), 121.3\left(C_{\mathrm{b}^{\prime}}\right)$, $119.5\left(C_{\mathrm{c}^{\prime}}\right), 115.4\left(C_{\mathrm{b}}\right), 80.5\left(C_{\mathrm{q}}\right), 78.5(\mathrm{C} \equiv \mathrm{CH}), 78.4(\mathrm{C} \equiv \mathrm{CH}), 75.7(\mathrm{C} \equiv \mathrm{CH}), 56.1\left(\mathrm{OCH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right)$.
${ }^{31} \mathbf{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.81 ($\mathrm{s}_{\text {app }}, 3 \mathrm{P}$).
$\boldsymbol{m} / \mathbf{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{56} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}_{3}=1079.2582[\mathrm{M}+\mathrm{H}]^{+}$; found 1079.2556.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S12. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Calc, $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C56H50N4O13P3	4746.7	1079.25563	1079.25817	-2.36
$(\mathrm{M}+\mathrm{Na})+$	C 56 H 49 N 4 NaO 13 P 3	14869.2	1101.23714	1101.24012	-2.7

Figure S13. ESI $^{+}$-HRMS spectrum of compound 5

Compound 6

Dissymetric hexasubstitued protected phosphazene derivative $5(158.0 \mathrm{mg}, 0.1460 \mathrm{mmol}, 1.0$ eq.) was dissolved in 3.5 mL of anhydrous DCM under nitrogen atmosphere and at $0^{\circ} \mathrm{C}$ was added dropwise $550 \mu \mathrm{~L}$ of trifluoroacetic acid (TFA) over a 30 minutes period. After stirring 3 hours at rt , the solvent was removed under reduced pressure and coevaporated with toluene. The residue was dissolved in 3 mL of anhydrous DCM and, under nitrogen atmosphere, was added $100 \mu \mathrm{~L}$ of DIPEA ($74.7 \mathrm{mg}, 0.578 \mathrm{mmol}, 4.0 \mathrm{eq}$.). At $0^{\circ} \mathrm{C}$ was added dropwise chloroacetylchoride* (34.5 $\mu \mathrm{L}, 49.0 \mathrm{mg}, 0.433 \mathrm{mmol}, 3.0$ eq.) in 1 mL of anhydrous DCM over a 15 minutes period. After stiring at rt for 18 hours, the solvent was removed under reduced pressure and the residue was dissolved in 25 mL of EtOAc and washed with $\mathrm{HCl} 1 \mathrm{M}(2 \times 20 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, then water $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Column chromatography on silica (EtOAc/Hexanes 20:80 to 45:55) afforded the desired compound 6 ($112.0 \mathrm{mg}, 0.1061 \mathrm{mmol}, \mathbf{7 2 \%}$) as a yellowish oil.
$\mathbf{R}_{\mathbf{f}}=0.39$, EtOAc/Hexanes 50:50.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 8.24 (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.33\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{b}}\right.$), 6.88-6.76 (m,22H, CH $\mathrm{b}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}$, $\left.\mathrm{CH}_{\mathrm{c}^{\prime}}\right), 4.65\left(\mathrm{t}_{\text {app }}, 10 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.55\left(\mathrm{t}_{\text {app }}, 5 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 163.7(C=O), 154.4\left(C_{\mathrm{a}}\right), 147.3\left(C_{\mathrm{d}^{\prime}}\right), 144.7\left(C_{\mathrm{d}}\right), 133.4\left(C_{\mathrm{a}^{\prime}}\right), 121.7\left(C_{\mathrm{c}}\right), 121.5\left(C_{\mathrm{b}^{\prime}}\right)$, $121.2\left(C_{\mathrm{c}^{\prime}}\right), 115.4\left(C_{\mathrm{b}}\right), 78.5(\mathrm{C} \equiv \mathrm{CH}), 78.4(\mathrm{C} \equiv \mathrm{CH}), 75.7(\mathrm{C} \equiv \mathrm{CH}), 56.1\left(\mathrm{OCH}_{2}\right), 42.8\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.69 ($\mathrm{s}_{\text {app }}, 3 \mathrm{P}$).
$\boldsymbol{m} / \mathbf{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{53} \mathrm{H}_{42} \mathrm{CIN}_{4} \mathrm{O}_{12} \mathrm{P}_{3}=1055.1773[\mathrm{M}+\mathrm{H}]^{+}$; found 1055.1758.

[^3]

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S15. gCOSY spectrum of compound 6

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S17. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$
MS Spectrum

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formuld	Abund	Expe, m/L	Cak, m/L $/\llcorner$	Diff(ppin)
$(\mathrm{M}+\mathrm{H})+$	C53H43ClN4O12P3	52261.9	1055.1758	1055.17734	-1.46
$(\mathrm{M}+\mathrm{Na})+$	C53H42CIN4NaO12P3	71751.9	1077.15729	1077.15928	-1.85

Figure S18. ESI $^{+}-$HRMS spectrum of compound 6

Mixture $\mathrm{Br} / \mathrm{Cl}$ (ratio of $\sim 20: 80$) with the use of bromoacetylchloride:

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Cl} / \mathrm{Br}$ mixture of compound $\mathbf{6}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S20. ${ }^{15} \mathrm{C}$ NMR spectrum of the $\mathrm{Cl} / \mathrm{Br}$ mixture of compound $6\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Les calculs sont effectués sur les adduits de sodium, $[\mathrm{M}+\mathrm{Na}]^{+}$, des 2 composés, soit à $\mathrm{m} / \mathrm{z} 1077$ pour le produit chloré et à $\mathrm{m} / \mathrm{z} 1121$ pour le produit bromé.

Table 1 - Intensité des 5 premiers pics du produit chloré

m / \mathbf{z}	Intensité
1077.15936	70826
1078.16210	43012
1079.15964	37473
1080.15895	18585
	1081.16393

Table 2 - Intensité des 5 premiers pics du produit bromé

\mathbf{m} / \mathbf{z}	Intensité
1121.10668	13002
1122.10897	8058
1123.10573	15548
1124.10886	8387
	1125.10994
somme	2960

En utilisant la somme des intensités pour les 5 premiers pics de chaque patron isotopique, nous obtenons un ratio de $\mathbf{7 8 . 6 \%}$ de produit chloré pour $\mathbf{2 1 . 4} \%$ de produit bromé.
Figure S21. Calculation of $\mathrm{Cl} / \mathrm{Br}$ ratio from ESI^{+}- HRMS of compound $\mathbf{6}$ when using bromoacetyl chloride as reactant

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Calc. m / z	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C53H43BrN4O12P3	4266.3	1099.12593	1099.12682	0.81
$(\mathrm{M}+\mathrm{Na})+$	C 53 H 42 Br N4NaO12P3	11561.4	1121.10677	1121.10877	1.78

MS Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. m / z	Calc. m / z	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C53H43ClN4012P3	20767.8	1055.17651	1055.17734	-0.78
$(\mathrm{M}+\mathrm{Na})+$	C53H42ClN4Na012P3	59549.3	1077.15946	1077.15928	0.16

Figure S22. ESI ${ }^{+}$-HRMS spectrum of compound $\mathbf{6}$ when using bromoacetyl chloride as reactant

Compound 7

Hexachlorophosphazene (freshly recrystallized from Hexanes, $518.6 \mathrm{mg}, 1.490 \mathrm{mmol}, 2.0$ eq.) and 4propargyloxyphenol 4 ($110.5 \mathrm{mg}, 0.745 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were dissolved in 50 mL of anhydrous THF. Under nitrogen atmosphere, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($2.42 \mathrm{~g}, 7.44 \mathrm{mmol}, 10.0$ eq.) was added and the mixture was stirred at reflux temperature $\left(66{ }^{\circ} \mathrm{C}\right)$ for 22 hours. The solution was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. Column chromatography on silica (DCM/Hexanes 20:80 to 75:25) afforded the desired compound 7 (243.6 $\mathrm{mg}, 0.530 \mathrm{mmol}, 71 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.66$, EtOAc/Hexanes 20:80.
 $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 155.8\left(C_{\mathrm{a}}, \mathrm{d}, J_{\mathrm{P}-\mathrm{c}}=2.6 \mathrm{~Hz}\right), 143.3\left(C_{\mathrm{d}}, \mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=10.5 \mathrm{~Hz}\right), 122.4\left(C_{\mathrm{c}}, \mathrm{d}, J_{\mathrm{P}-\mathrm{c}}=5.0\right.$ $\mathrm{Hz}), 116.0\left(C_{b}, \mathrm{~d}, J_{P-c}=2.2 \mathrm{~Hz}\right), 78.1(\mathrm{C} \equiv \mathrm{CH}), 76.0(\mathrm{C} \equiv \mathrm{CH}), 56.3\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$.
${ }^{31}$ P NMR (122 MHz, CDCl $\left.{ }_{3}, \delta \mathrm{ppm}\right): 22.4\left(\mathrm{~d}, 2 \mathrm{P},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{P})=59.2 \mathrm{~Hz}, \mathrm{PCl}_{2}\right), 12.9\left(\mathrm{t}, 1 \mathrm{P},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{P})=59.3 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{P}-\mathrm{O}\right)$. $\boldsymbol{m} / \mathbf{z}\left(E I^{+}-H R M S\right)$ for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{5} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{3}=457.8267[\mathrm{M}+\mathrm{H}]^{+}$; found 457.8280, 479.8086 $[\mathrm{M}+\mathrm{Na}]^{+}$, found 479.8093.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $7\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S25. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $7\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C9H8Cl5N3O2P3	97981.9	457.82802	457.82665	3
$(\mathrm{M}+\mathrm{Na})+$	C 9 H 7 Cl 5 N 3 NaO 2 P 3	7116.5	479.80927	479.8086	1.4

Figure S26. ESI $^{+}$-HRMS spectrum of compound 7

Compound 8

The monofunctionalized derivative $\mathbf{7}(74.7 \mathrm{mg}, 0.163 \mathrm{mmol}, 1.0$ eq.) and protected p-aminophenol derivative 2 (278.0 $\mathrm{mg}, 1.329 \mathrm{mmol}, 8.1$ eq.) were dissolved in 10 mL of anhydrous THF. Under nitrogen atmosphere, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.13 \mathrm{~g}$, $6.53 \mathrm{mmol}, 40.0$ eq.) was added and the mixture was stirred at reflux temperature $\left(66^{\circ} \mathrm{C}\right)$ for 18 hours. The solution was filtered and washed with DCM. The filtrate was concentrated under reduced pressure. Column chromatography
 white foam.
$\mathbf{R}_{\mathrm{f}}=0.42$, EtOAc/Hexanes 4:6.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): ~ 7.07-7.00\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right)$, $6.82-6.64\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}, \mathrm{CH} \mathrm{c}^{\prime}, \mathrm{NH}\right), 4.58(\mathrm{~d}, \mathrm{~J}=2.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}=\mathrm{CH}$), $2.46\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}\right.$), $1.46\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $154.6\left(C_{\mathrm{a}}\right)$, $153.3(C=\mathrm{O})$, $153.1(C=0), 146.0\left(C_{\mathrm{d}^{\prime}}\right), 144.8\left(C_{\mathrm{d}}\right), 135.1\left(C_{\mathrm{a}^{\prime}}\right), 135.0$ $\left(C_{a^{\prime}}\right), 122.0\left(C_{\mathrm{c}}\right), 121.3\left(C_{\mathrm{c}^{\prime}}\right), 121.2\left(C_{\mathrm{c}^{\prime}}\right), 120.7\left(C_{\mathrm{b}^{\prime}}\right), 120.3\left(C_{\mathrm{b}^{\prime}}\right), 115.5\left(C_{\mathrm{b}}\right), 80.5\left(C_{\mathrm{q}}\right), 78.7(C \equiv \mathrm{CH}), 75.7(\mathrm{C} \equiv C H), 56.2$ $\left(\mathrm{OCH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right)$.
${ }^{31} \mathbf{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $9.9\left(\mathrm{t},{ }^{2} \mathrm{~J}=9.3 \mathrm{~Hz}, 3 \mathrm{P}\right)$.
$\boldsymbol{m} / \boldsymbol{z}\left(E I^{+}-\right.$HRMS $)$for $\mathrm{C}_{64} \mathrm{H}_{77} \mathrm{~N}_{8} \mathrm{O}_{17} \mathrm{P}_{3}=1323.4692\left[\mathrm{M}^{+} \mathrm{H}^{+}\right.$; found 1323.4664, 1345.4512 [M+Na] ${ }^{+}$, found 1345.4484.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S28. gCOSY spectrum of compound 8

Figure S29. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $8\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $8\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. m / z	Calc. m / z	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C64H78N8O17P3	27308	1323.46637	1323.46923	-2.16
$(\mathrm{M}+\mathrm{Na})+$	C64H77N8NaO17P3	22442.4	1345.44836	1345.45117	-2.09

Figure S31. ESI ${ }^{+}$-HRMS spectrum of compound 8

Compound 9

Dissymetric hexasubstitued protected phosphazene derivative $8(100.5 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.0$ eq.) was dissolved in 5 mL of anhydrous DCM under nitrogen atmosphere and at $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (TFA, 3 mL) was added dropwise over a 35 minutes period. After stirring 5 hours at $r t$, the solvent was removed under reduced pressure and coevaporated with toluene. The residue was dissolved in 2 mL of anhydrous DCM and, under nitrogen atmosphere was added $159 \mu \mathrm{~L}$ of DIPEA ($117.8 \mathrm{mg}, 0.911 \mathrm{mmol}, 12.0 \mathrm{eq}$.). At $0^{\circ} \mathrm{C}$ was added dropwise chloroacetylchoride ($60.4 \mu \mathrm{~L}$, $85.8 \mathrm{mg}, 0.760 \mathrm{mmol}, 10.0$ eq.) in 1.5 mL of anhydrous DCM over a 2 hours period. After stiring at rt for 13 hours, the solvent was removed under reduced pressure and the residue was dissolved in 25 mL of EtOAc and washed with HCl $1 \mathrm{M}(2 \times 20 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, then water $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Column chromatography on silica (EtOAc/Hexanes 40:60 to 100:0) afforded the desired compound 9 ($44.0 \mathrm{mg}, 0.0370 \mathrm{mmol}, 48 \%$).
$\mathbf{R}_{\mathrm{f}}=0.56, \mathrm{DCM} / \mathrm{MeOH} 10: 90$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}, \delta \mathrm{ppm}$): 7.46-7.37 (dd, $10 \mathrm{H}, J=11.2 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{CH}_{b^{\prime}}$), 6.90-6.78 (m, 14H, CH $\mathrm{b}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}$, $\left.\mathrm{CH}_{c^{\prime}}\right), 4.69\left(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.25\left(2 \times \mathrm{s}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.95(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}, \mathrm{MeOD}, \delta \mathrm{ppm}): 167.4(C=0), 156.4\left(C_{\mathrm{a}}\right)$, $148.1\left(C_{\mathrm{d}^{\prime}}\right), 148.0\left(C_{\mathrm{d}}\right), 136.5\left(C_{\mathrm{a}^{\prime}}\right), 122.8\left(C_{\mathrm{c}}\right), 122.9\left(C_{\mathrm{b}^{\prime}}\right)$, $122.7\left(C_{b^{\prime}}\right), 122.4\left(C_{\mathrm{c}^{\prime}}\right), 122.4\left(C_{\mathrm{c}^{\prime}}\right), 116.8\left(C_{\mathrm{b}}\right), 79.9(\mathrm{C} \equiv \mathrm{CH}), 77.1(\mathrm{C} \equiv \mathrm{CH}), 57.2\left(\mathrm{OCH}_{2}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$.
${ }^{31}$ P NMR (122 MHz, MeOD, $\left.\delta \mathrm{ppm}\right): 9.6\left(\mathrm{t},{ }^{2} \mathrm{~J}=17.9 \mathrm{~Hz}, 3 \mathrm{P}\right)$.
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{49} \mathrm{H}_{42} \mathrm{Cl}_{5} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{P}_{3}=624.0181[\mathrm{M}+2 \mathrm{Na}]^{2+}$, found 624.0190, $1225.0470[\mathrm{M}+\mathrm{Na}]^{+}$; found 1225.0463.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right)$

Figure S33. gCOSY spectrum of compound 9

Figure S34. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $9\left(\mathrm{CD}_{3} \mathrm{OD}, 122 \mathrm{MHz}\right)$

Figure $\mathbf{S 3 5} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $9\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed m/z	Calc m/z	Diff(ppm)
$(\mathrm{M}+2 \mathrm{Na})+2$	$\mathrm{C} 49 \mathrm{H} 42 \mathrm{Cl} 5 N 8 N a 2012 \mathrm{P} 3$	1074.44	624.01899	624.0181	0.89
$(\mathrm{M}+\mathrm{Na})+$	$\mathrm{C} 49 \mathrm{H} 42 \mathrm{Cl} 5 \mathrm{~N} 8 \mathrm{NaO12P} 3$	9275.75	1225.04633	1225.04699	-0.66

Figure S36. ESI^{+}-HRMS spectrum of compound 9

Trivalent dendron 12

To a stirring solution of $10^{1}(570 \mathrm{mg}, 680 \mathrm{mmol}, 3.45 \mathrm{eq}$.$) and tripropargylated synthon 11^{4}(70.0 \mathrm{mg}, 197 \mathrm{mmol}, 1.00$ eq.) in dry THF (6 mL) were added 6 mL of $\mathrm{H}_{2} \mathrm{O}$ and a mixture of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(44.7 \mathrm{mg}, 179 \mathrm{mmol}, 0.90$ eq.) and Sodium ascorbate ($35.5 \mathrm{mg}, 179 \mathrm{mmol}, 0.90$ eq.). After stirring for 3 hours at $50^{\circ} \mathrm{C}$ in a 20 mL vial, the reaction was left stirring overnight at room temperature. EtOAc (50 mL) was added and the solution was washed successively with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 25 \mathrm{~mL})$, water $(2 \times 20 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 98:2 to $94: 6)$ afforded the desired compound 12 ($300 \mathrm{mg}, 108 \mathrm{mmol}, 55 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.17, \mathrm{DCM} / \mathrm{MeOH} 95: 5$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.71 ($\mathrm{s}, 3 \mathrm{H}, H_{\text {triazole }}$), 7.05 (br s, $1 \mathrm{H}, \mathrm{NHCOCH} \mathrm{N}_{2} \mathrm{Br}$), 6.80 (br s, $1 \mathrm{H}, \mathrm{NHCOCH} \mathrm{NCl}_{2}$), 5.33 ($\mathrm{d}_{\text {app }}, 3 \mathrm{H}, \mathrm{H}_{4 \mathrm{gal}}$), 5.17 (dd, ${ }^{3} J_{4,3}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=9.1 \mathrm{~Hz}, 3 \mathrm{H}, H_{3 \mathrm{glc}}$), $5.10\left(\mathrm{dd},{ }^{3} J_{2,1}=10.5 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.H_{2 \text { gal }}\right), 4.97\left(\mathrm{dd},{ }^{3} J_{2,3}=7.0 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3 \text { gal }}\right.$), $4.88\left(\mathrm{dd},{ }^{3} J_{2,1}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, H_{2 g \mathrm{clc}}\right), 4.57-4.47(\mathrm{~m}$, $\left.21 \mathrm{H}, \mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{1 g \mathrm{c}}, H_{6 \mathrm{aglc}}, H_{1 \text { gal }}\right), 4.12-4.08\left(\mathrm{~m}, 9 \mathrm{H}, H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}\right), 3.89-3.57(\mathrm{~m}, 59 \mathrm{H}, \mathrm{CH} \mathrm{Br} / \mathrm{Cl}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2}, H_{4 \mathrm{glc}}, H_{5 \text { gal }}, H_{5 g \mathrm{c}}\right)$, 2.18-1.97 (m, 63H, $\left.\mathrm{COCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.3, 170.1, 170.0, 169.7, 169.6, 169.0 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 166.7 (CO), 144.4 $\left(C_{\text {triazole }}=\mathrm{CH}\right), 123.7\left(\mathrm{C}=C_{\text {triazole }} \mathrm{H}\right), 101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 g 1 \mathrm{c}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9$ $\left(C_{3 g a l}\right), 70.6\left(C_{5 g a l}\right), 70.5,70.4,70.2,69.4\left(\mathrm{OCH}_{2}\right), 69.0\left(C_{2 g a l}\right), 69.0\left(\mathrm{OCH}_{2}\right), 68.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.5\left(C_{4 g a l}\right)$, 64.6 $\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \text { glc }}\right), 60.7\left(C_{6 g \mathrm{gal}}\right), 60.2\left(C_{q}\right), 50.2\left(\mathrm{~N}_{\text {triazole }} C \mathrm{H}_{2}\right), 42.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 29.8\left(\mathrm{CH}_{2} \mathrm{Br}\right), 20.8,20.8,20.7,20.6$, 20.6, 20.6, 20.5 (7×s, COCH_{3}).
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+} \mathrm{HRMS}\right)$ for $\mathrm{C}_{117} \mathrm{H}_{171} \mathrm{BrN}_{10} \mathrm{O}_{67}=1434.4805[\mathrm{M}+2 \mathrm{H}]^{2+}$, found $1434.4843,1456.4624[M+2 \mathrm{Na}]^{2+}$, found 1456.4624.

[^4]

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $12\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $12\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Calc. $\boldsymbol{m} / \boldsymbol{z}$	Ditt(ppm)
$(\mathrm{M}+2 \mathrm{H})+2$	$\mathrm{C} 117 \mathrm{H} 173 \mathrm{Br} \mathrm{N10} \mathrm{O67}$		91472	1434.48427	1434.4805
					2.63
$(\mathrm{M}+2 \mathrm{Na})+2$	$\mathrm{C} 117 \mathrm{H} 171 \mathrm{Br} \mathrm{N10} \mathrm{Na2} \mathrm{O67}$	68812	1456.46235	1456.46244	-0.06

Figure S39. ESI ${ }^{+}$-HRMS spectrum of compound 12

Pentavalent dendron 13

To a solution of pentapropargylated cyclotriphosphazene derivative $\mathbf{6}(55.8 \mathrm{mg}, 0.053 \mathrm{mmol}, 1.0$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(8 \mathrm{~mL})$, were added azido derivative $10\left(456.7 \mathrm{mg}, 0.545 \mathrm{mmol}, 10.0\right.$ eq.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(102.8 \mathrm{mg}$, $0.412 \mathrm{mmol}, 7.8 \mathrm{eq}$.) and sodium ascorbate ($83.5 \mathrm{mg}, 0.421 \mathrm{mmol}, 8.0 \mathrm{eq}$.) While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room tem perature for additional 18 hours. Ethyl acetate (30 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate $(20 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 20 \mathrm{~mL})$, water (20 mL) and brine (10 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.90: 10\right)$ afforded desired multivalent compound 13 ($230.5 \mathrm{mg}, 0.044 \mathrm{mmol}, \mathbf{8 3} \%$).
$\mathbf{R}_{\mathrm{f}}=0.59, \mathrm{DCM} / \mathrm{MeOH} 90: 10$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $9.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), $7.88\left(\mathrm{~s}, 2 \mathrm{H}, H_{\text {triazole }}\right), 7.82\left(2 \times \mathrm{s}, 3 \mathrm{H}, H_{\text {triazole }}\right), 7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{b}\right), 6.91-6.75\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}\right), 6.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{c^{\prime}}\right), 5.31\left(\mathrm{~d}_{\text {app }}, 5 \mathrm{H}, H_{4 \mathrm{gal}}\right), 5.16-5.05\left(\mathrm{~m}, 20 \mathrm{H}, H_{3 g \mathrm{l}}\right.$, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \text { gal }}\right), 4.92\left(\mathrm{dd},{ }^{3} J_{2,3}=2.3 \mathrm{~Hz},{ }^{3} J_{3,4}=3.5 \mathrm{~Hz}, 5 \mathrm{H}, H_{\text {ggal }}\right), 4.84\left(\mathrm{t}_{\text {app }}, 6 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.53-4.45\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{19 \mathrm{lcc}}\right.$,
 2.14-1.93 (m, 105H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, $169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$, $164.6(\mathrm{C}=\mathrm{O})$, $155.2+155.2\left(C_{\mathrm{a}}\right), 146.6\left(C_{\mathrm{d}^{\prime}}\right), 144.4\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $144.1\left(C_{\mathrm{a}}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.3\left(C_{\text {trizazole }}=\mathrm{CH}\right)$, $134.5\left(C_{\mathrm{a}^{\mathrm{a}}}\right)$,
$124.4\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $124.0\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $121.8\left(C_{\mathrm{c}}\right), 121.7\left(C_{\mathrm{b}^{\prime}}\right), 121.0\left(C_{\mathrm{c}^{\prime}}\right), 120.8\left(C_{\mathrm{c}}\right), 115.2\left(C_{\mathrm{b}}\right), 115.0$ $\left(C_{\mathrm{b}}\right), 100.9\left(C_{1 \mathrm{gal}}\right), 100.4\left(C_{1 \mathrm{glc}}\right), 76.1\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 72.5\left(C_{2 \mathrm{glc}}\right), 71.5\left(C_{3 \mathrm{gal}}\right), 70.8\left(C_{5 \mathrm{gal}}\right), 70.5,70.5$, $70.4,70.3,70.3,70.1,70.1,69.2,69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \mathrm{gal}}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 62.2\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{glc}}\right)$, $61.7\left(\mathrm{C}_{6 \mathrm{gal}}\right), 60.6,50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 43.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 20.7,20.7,20.6,20.5,20.5,20.5,20.4\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.2-9.4 (m, 3P).
IR (neat, $v \mathrm{~cm}^{-1}$) 2878 (m), 1743 (s), 1501 (m), 1367 (m), 1216 (s), 1042 (m), 833 (w).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}-\mathrm{HRMS}$) for $\mathrm{C}_{223} \mathrm{H}_{297} \mathrm{CIN}_{19} \mathrm{O}_{117} \mathrm{P}_{3}=1747.8998[\mathrm{M}+3 \mathrm{H}]^{3++}$; found 1747.8958, 1769.8818 $[\mathrm{M}+3 \mathrm{Na}]^{3+}$, found 1769.8798.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $13\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S41. gCOSY spectrum of compound 13

Figure S42. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $13\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $13\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S44. FT-IR spectrum of compound 13

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. m / z	Calc. m / z	Diff(ppm)
$(\mathrm{M}+4 \mathrm{H})+4$	C223H301ClN190117P3	2878.5	1311.18078	1311.17667	3.13
$(\mathrm{M}+3 \mathrm{H})+3$	C223H300ClN19O117P3	3627.3	1747.89583	1747.89981	-2.27
$(\mathrm{M}+3 \mathrm{Na})+3$	C223H297ClN19Na3O117P3	8407.5	1769.87979	1769.88175	-1.11

Figure S45. ESI ${ }^{+}$-HRMS spectrum of compound 13

Trivalent dendron 14

To a stirring solution of $\mathbf{1 2}(443.9 \mathrm{mg}, 0.155 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry DMF (6 mL) under a nitrogen atmosphere were added sodium azide ($25.1 \mathrm{mg}, 0.386 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sodium iodide ($2.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.1 \mathrm{eq}$.). After stirring overnight at $70^{\circ} \mathrm{C}$, the solvent was removed and EtOAC was added, then the solution was washed successively with water ($4 \times 50 \mathrm{~mL}$) and brine ($3 \times 25 \mathrm{~mL}$). The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatography on silica (EtOAc/Acetone 90:10 to $30: 70$) afforded the desired compound 27 ($339.1 \mathrm{mg}, 0.120 \mathrm{mmol}, 77 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.30, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.70\left(\mathrm{~s}, 3 \mathrm{H}, H_{\text {triazole }}\right), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.33\left(\mathrm{~d}_{\text {app }}, 3 \mathrm{H}, H_{4 \text { gal }}\right), 5.17\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{4,3}=9.4\right.$ $\left.\mathrm{Hz},{ }^{3} J_{3,2}=9.1 \mathrm{~Hz}, 3 \mathrm{H}, H_{\text {gglc }}\right), 5.10\left(\mathrm{dd},{ }^{3} J_{2,1}=10.5 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{2 \text { gal }}\right), 4.97\left(\mathrm{dd},{ }^{3} J_{2,3}=7.0 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, H_{\text {gaal }}\right), 4.88\left(\mathrm{dd},{ }^{3} J_{2,1}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, H_{2 g \mathrm{cl}}\right), 4.57-4.47\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{\text {gglc }}, H_{\text {6aglc }}\right.$, $H_{\text {igal }}$, 4.12-4.08 (m, 9H, $H_{\text {bbglc }}, H_{6 \text { agal }}, H_{\text {6ggal }}, 3.89-3.57\left(\mathrm{~m}, 59 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2}, H_{4 \mathrm{glc}}, H_{\text {5gal }}, H_{5 g \mathrm{c}}\right.$), 2.181.97 (m, 63H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \delta \mathrm{ppm}\right): 170.3,170.3,170.1,170.0,169.7,169.6,169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 166.7$ (CO), 144.4 $\left(C_{\text {triazole }}=\mathrm{CH}\right), 123.7\left(\mathrm{C}=C_{\text {triazole }} \mathrm{H}\right), 101.0\left(C_{\text {1gal }}\right), 100.5\left(C_{\text {1glc }}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{\text {3glc }}\right), 72.5\left(C_{\text {5glc }}\right), 71.5\left(C_{2 g \mathrm{c}}\right), 70.9$ $\left(C_{\text {3gal }}\right), 70.6\left(C_{5 \text { gal }}\right), 70.5,70.4,70.2,69.4\left(\mathrm{OCH}_{2}\right), 69.0\left(C_{2 \text { gal }}\right), 69.0\left(\mathrm{OCH}_{2}\right), 68.6\left(\mathrm{C}_{\mathrm{q}} C \mathrm{CH}_{2} \mathrm{O}\right), 66.5\left(\mathrm{C}_{4 \text { gal }}\right), 64.6$ $\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(\mathrm{C}_{\text {6glc }}\right), 60.7\left(\mathrm{C}_{6 \text { gal }}\right), 60.0\left(\mathrm{C}_{\mathrm{q}}\right), 52.6\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 50.2\left(\mathrm{~N}_{\text {triazole }} C H_{2}\right), 20.8,20.8,20.7,20.6,20.6,20.6$, 20.5 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}$HRMS) for $\mathrm{C}_{117} \mathrm{H}_{171} \mathrm{~N}_{13} \mathrm{O}_{67}=1416.0259[\mathrm{M}+2 \mathrm{H}]^{2+}$, found 1416.0296, $1438.0079[\mathrm{M}+2 \mathrm{Na}]^{2+}$, found 1438.0117.

GPC measurements (THF): $\mathrm{M}_{w}=1776 ; M_{\mathrm{n}}=1671, \mathrm{PDI}\left(M_{w} / M_{\mathrm{n}}\right)=1.063$

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $14\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S47. gCOSY spectrum of compound 14

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $14\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+2 \mathrm{H})+2$	C117H173N13O67	653497.1	1416.02959	1416.02594	2.58
$(\mathrm{M}+2 \mathrm{Na})+2$	C117H171N13Na2O67	586370.6	1438.01167	1438.00788	2.63

Figure S49. ESI ${ }^{+}$-HRMS spectrum of compound 14

Figure S50. GPC trace (in THF) of compound 14

Pentavalent dendron 15

To a stirring solution of $13(224.7 \mathrm{mg}, 0.043 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry DMF (3 mL) under a nitrogen atmosphere were added sodium azide ($8.4 \mathrm{mg}, 0.129 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and sodium iodide ($1.3 \mathrm{mg}, 0.009 \mathrm{mmol}, 0.2 \mathrm{eq}$.). After stirring overnight (15 h) at $70^{\circ} \mathrm{C}$, the solvent was removed and EtOAc was added, then the solution was washed successively with water $(4 \times 50 \mathrm{~mL})$ and brine $(3 \times 25 \mathrm{~mL})$. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 99:1 to 90:10) afforded the desired compound 15 ($209.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 93 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.59, \mathrm{DCM} / \mathrm{MeOH} 90: 10$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $9.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.88\left(\mathrm{~s}, 2 \mathrm{H}, H_{\text {triazole }}\right), 7.82\left(2 \times \mathrm{s}, 3 \mathrm{H}, H_{\text {triazole }}\right), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{b^{\prime}}\right), 6.91-6.75\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}\right), 6.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{c^{\prime}}\right), 5.30\left(\mathrm{~d}_{\mathrm{app}}, 5 \mathrm{H}, \mathrm{H}_{4 \mathrm{gal}}\right), 5.16-5.04\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}\right.$, $\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \text { gal }}$), $4.91\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=2.3 \mathrm{~Hz},{ }^{3} J_{3,4}=3.5 \mathrm{~Hz}, 5 \mathrm{H}, H_{3 \text { gal }}\right), 4.84\left(\mathrm{t}_{\text {app }}, 5 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.53-4.45\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}\right.$, $\left.H_{6 \text { aglc }}, H_{1 \text { gal }}\right), 4.10-4.02\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}, H_{6 \text { bglc }}, H_{6 \text { agal }}, H_{6 \mathrm{bgal}}\right), 3.86-3.54\left(\mathrm{~m}, 85 \mathrm{H}, H_{5 \text { gal }}, H_{5 g l \mathrm{c}}, H_{4 g \mathrm{c}}, O C H_{2}\right), 2.17-1.92(\mathrm{~m}$, $105 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, 169.0 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 165.8 ($\mathrm{C}=\mathrm{O}$), $155.2+155.2\left(C_{\mathrm{a}}\right), 146.6\left(C_{\mathrm{d}^{\prime}}\right), 144.5\left(C_{\mathrm{d}}\right), 144.4\left(C_{\mathrm{d}}\right), 143.5\left(C_{\text {triazole }}\right), 143.3\left(C_{\text {triazole }}\right), 134.5\left(C_{\mathrm{a}^{\prime}}\right), 124.4\left(C H_{\text {triazole }}\right)$, $124.0\left(C_{\text {triazole }}\right)$, $121.9\left(C_{\mathrm{c}}\right), 121.8\left(C_{\mathrm{c}}\right)$, $121.7\left(C_{\mathrm{b}^{\prime}}\right)$, $121.6\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{c}^{\prime}}\right), 120.7\left(C_{\mathrm{c}^{\prime}}\right), 115.2\left(C_{\mathrm{b}}\right), 115.0$ $\left(C_{\mathrm{b}}\right), 100.9\left(C_{1 \mathrm{gal}}\right), 100.4\left(C_{1 \mathrm{glc}}\right), 76.1\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 72.4\left(C_{2 \mathrm{glc}}\right), 71.5\left(C_{3 g \mathrm{al}}\right), 70.8\left(C_{5 g \mathrm{ga}}\right), 70.5,70.4$,
70.4, 70.3, 70.3, 70.3, 70.1, 70.1, 69.2, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.8$ $\left(C_{6 \mathrm{glc}}\right)$, $61.6\left(\mathrm{C}_{6 \mathrm{gal}}\right), 60.6,52.3\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 20.7,20.7,20.6,20.5,20.5,20.4\left(\mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.3-9.4 (m, 3P).
IR (neat, $v \mathrm{~cm}^{-1}$) 2882 (m), 2113 (w, N_{3}), 1740 (s), 1502 (m), 1366 (m), 1216 (s), 1041 (m), 833 (w)
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+}-H R M S\right)$ for $\mathrm{C}_{223} \mathrm{H}_{297} \mathrm{~N}_{22} \mathrm{O}_{117} \mathrm{P}_{3}=1750.2466[\mathrm{M}+3 \mathrm{H}]^{3+}$; found 1750.2448, 1772.2285[M+3Na] ${ }^{3+}$, found 1772.2226.

NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=3.10 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=2.6 \mathrm{~nm}$
GPC measurements (THF): $M_{\mathrm{w}}=5462 ; M_{\mathrm{n}}=5367, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.018$
$\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=4784 ; M_{\mathrm{n}}=4609, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.038$

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $15\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S52. gCOSY spectrum of compound 15

Figure S53. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $15\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S54. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $15\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S55. FT-IR spectrum of compound 15

MS Zoomed Spectrum

MS Spectrum Peak Llst

Ion	Ion Formula	Abund	Expe. m / z	Calc. m / z	Diff(ppm)
$(\mathrm{M}+4 \mathrm{H})+4$	C223H301N22O117P3	1451	1312.9432	1312.93677	4.9
$(\mathrm{M}+3 \mathrm{H})+3$	C223H300N22O117P3	1844	1750.24482	1750.2466	-1.02
$(\mathrm{M}+3 \mathrm{Na})+3$	$\mathrm{C} 223 \mathrm{H} 297 \mathrm{~N} 22 \mathrm{Na3O117P3}$	2213.2	1772.22261	1772.22854	-3.34

Figure S56. ESI ${ }^{+}$-HRMS spectrum of compound 15

Polydispersity(Mw/Mn) : 1.018 ± 0.145 (14\%)
Polydispersity(Mz/Mn) : 1.098 ± 0.342 (31\%)
Molar Mass Moments (g/mol)

Molar Mass Moments	$(\mathbf{g} / \mathbf{m o l})$		
$\mathbf{M n}$	$:$	$5.367 e+03$	(9%)
$\mathbf{M w}$	$:$	$5.462 e+03$	(108)
$\mathbf{M z}$	$:$	$5.895 e+03$	(29%)

Figure S57. GPC trace (in THF) of compound 15

Polydispersity(Mw/Mn) : 1.038 ± 0.192 (18\%)
Polydispersity(Mz/Mn) : 1.228 ± 0.562 (46\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)
Mn
Mw
$: 4.609 \mathrm{e}+03$ (12\%)
$: 4.784 \mathrm{e}+03$ (138)
$\mathrm{Mz}: 5.659 \mathrm{e}+03$ (448)
Figure S58. GPC trace (in $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)$) of compound 15

Protected hexavalent glycocluster 16

To a solution of propargylated derivative $1\left(13.5 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0\right.$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ (5 mL), were added azido derivative 10 ($95.6 \mathrm{mg}, 0.114 \mathrm{mmol}, 8.8 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(26.9 \mathrm{mg}, 0.101 \mathrm{mmol}, 7.8 \mathrm{eq}$.) and sodium ascorbate ($22.1 \mathrm{mg}, 0.111 \mathrm{mmol}, 8.6$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 h ours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 99: 1\right.$ to $\left.96: 4\right)$ afforded desired multivalent compound 16 (67 $\mathrm{mg}, 0.011 \mathrm{mmol}, 84 \%)$.
$\mathbf{R}_{\mathbf{f}}=0.42, \mathrm{DCM} / \mathrm{MeOH} 95: 5$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.82\left(\mathrm{~s}, 6 \mathrm{H}, H_{\text {triazole }}\right), 6.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right), 6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $\left.\mathrm{CH}_{c}\right), 5.30\left(\mathrm{~d}_{\text {app }}, 6 \mathrm{H}, H_{4 \mathrm{gal}}\right), 5.14\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{4,3}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=9.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}\right.$), 5.09-5.04 (m, $\left.18 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}\right), 4.91$ (dd, ${ }^{3} J_{2,3}=7.1 \mathrm{~Hz},{ }^{3} J_{3,4}=3.3 \mathrm{~Hz}, 6 \mathrm{H}, H_{3 \mathrm{gal}}$), $4.84\left(\mathrm{t}_{\text {app }}, 6 \mathrm{H}, H_{2 \mathrm{glc}}\right.$), $4.53-4.43\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 a g l c}, H_{1 \mathrm{gal}}\right)$, 4.08$4.03\left(\mathrm{~m}, 18 \mathrm{H}, H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}\right), 3.86-3.83\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{LacOCH}_{2}\right), 3.75\left(\mathrm{t}_{\text {app }}, 6 \mathrm{H}, H_{4 \mathrm{glc}}\right), 3.60-3.53(\mathrm{~m}, 72 \mathrm{H}$, $\left.\mathrm{OCH}_{2}, H_{5 g a l}, H_{5 \mathrm{glc}}\right)$, 2.11-1.92 ($7 \times \mathrm{s}, 126 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.5, 170.5, 170.3, 170.2, 170.0, 169.8, $169.3\left(7 \mathrm{~s}, \mathrm{COCH}_{3}\right), 155.5\left(C_{\mathrm{a}}\right), 144.7$ $\left(C_{\mathrm{d}}\right), 143.7\left(C_{\text {triazole }}=\mathrm{CH}\right), 124.4\left(\mathrm{C}_{\text {triazole }}=C H\right), 122.0\left(C_{\mathrm{c}}\right), 115.5\left(C_{\mathrm{b}}\right), 101.2\left(C_{\text {1gal }}\right), 100.8\left(C_{1 \mathrm{glc}}\right), 76.5\left(C_{4 \mathrm{glc}}\right), 73.0$ $\left(C_{3 \text { glc }}\right), 72.8\left(C_{5 g \mathrm{glc}}\right), 71.8\left(C_{2 g \mathrm{cl}}\right), 71.2\left(C_{3 \mathrm{gal}}\right), 70.8\left(C_{5 \mathrm{gal}}\right), 70.8,70.7,70.6,70.4,69.6\left(\mathrm{OCH}_{2}\right), 69.3\left(C_{2 \mathrm{gal}}\right), 69.2\left(\mathrm{OCH}_{2}\right)$,
$66.8\left(C_{4 \mathrm{gal}}\right), 62.4\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.2\left(C_{6 \mathrm{glc}}\right), 61.0\left(C_{6 \mathrm{gal}}\right), 50.4\left(\mathrm{NCH}_{2}\right), 21.1,21.0,20.9,20.8,20.8,20.8,20.7(7 \times \mathrm{s}$, COCH_{3}).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.7 (s, 3P).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}-\mathrm{HRMS}$) for $\mathrm{C}_{258} \mathrm{H}_{348} \mathrm{~N}_{21} \mathrm{O}_{138} \mathrm{P}_{3}=1511.5099[\mathrm{M}+4 \mathrm{H}]^{4+}$; found 1511.5123, $1533.2410[M+4 \mathrm{Na}]^{4+}$, found 1533.2391.

NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=2.76 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=2.9 \mathrm{~nm}$.
GPC measurements (THF): $M_{\mathrm{w}}=6882 ; M_{\mathrm{n}}=6764, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.017$.

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $16\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S60. gCOSY spectrum of compound 16

Figure S61. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $16\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S62. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $16\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed m/z	Calc m/z	Diff(ppm)
$(\mathrm{M}+4 \mathrm{H})+4$	C 258 H 352 N 210138 P 3	17753.4	1511.51226	1511.50988	-2.38
$(\mathrm{M}+4 \mathrm{Na})+4$	C 258 H 348 N 21 Na 40138 P 3	7228.1	1533.23912	1533.24101	1.89
$(\mathrm{M}+3 \mathrm{Na})+3$	C 258 H 348 N 21 Na 30138 P 3	3659.9	2036.6626	2036.65828	-4.33

Figure S63. ESI ${ }^{+}$-HRMS spectrum of compound 16

Figure S64. GPC trace (in THF) of compound 16

Protected octadecavalent dendrimer 17

To a solution of hexapropargylated cyclotriphosphazene derivative $\mathbf{1}(6.91 \mathrm{mg}, 6.79 \mu \mathrm{~mol}, 1.0$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added azido derivative $14\left(150 \mathrm{mg}, 53.0 \mu \mathrm{~mol}, 7.8 \mathrm{eq}\right.$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(13.2 \mathrm{mg}, 53.0 \mu \mathrm{~mol}$, 7.8 eq.) and sodium ascorbate ($10.4 \mathrm{mg}, 53.0 \mu \mathrm{~mol}, 7.8$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (30 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (20 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 20 \mathrm{~mL})$, water (20 mL) and brine (10 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.90: 10\right)$ afforded desired multivalent compound 17 ($79.0 \mathrm{mg}, 4.39 \mu \mathrm{~mol}, \mathbf{6 5 \%}$).
$\mathbf{R}_{\mathrm{f}}=0.28, \mathrm{DCM} / \mathrm{MeOH} 92: 8$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.89\left(\mathrm{~s}, 6 \mathrm{H}, H_{\text {inttriazole }}\right), 7.68\left(\mathrm{~s}, 18 \mathrm{H}, H_{\text {ext-tiazole }}\right), 6.88-6.69\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{b}, \mathrm{CH}_{c}\right.$, $\mathrm{CH}_{c^{\prime}}+\mathrm{NH}$ not visible), $5.30\left(\mathrm{~d}_{\text {app }}, 18 \mathrm{H}, \mathrm{H}_{\text {qgal }}\right), 5.14\left(\mathrm{t}_{\text {app }}, 18 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}\right) 5.07-5.02\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{\text {2gal }}\right), 4.91\left(\mathrm{dd},{ }^{3} J_{2,3}=\right.$ $\left.3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{H}_{3 \mathrm{gal}}\right), 4.83\left(\mathrm{t}_{\text {app }}, 18 \mathrm{H}, H_{2 g \mathrm{c}}\right), 4.54-4.43\left(\mathrm{~m}, 126 \mathrm{H}, \mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \text { agic }}, H_{\text {1gal }}\right)$,
4.10-4.02 (m, 54H, $\left.H_{6 \text { bglc }}, H_{6 a g a l}, H_{6 \text { bgal }}\right), 3.86-3.53\left(\mathrm{~m}, 354 \mathrm{H}, \mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{5 g a l}, H_{5 g l c}, H_{4 g l c}, \mathrm{OCH}_{2}\right.$, $\mathrm{HNC}_{q} \mathrm{CH}_{2} \mathrm{O}$), 2.11-1.92 ($\mathrm{m}, 378 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, 168.9 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 165.1 (CO), 155.2 $\left(C_{\mathrm{a}}\right), 144.2\left(C_{\mathrm{d}}\right), 144.2\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 125.2\left(\mathrm{C}_{\text {triazole }}=C H\right), 123.7\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.6\left(C_{\mathrm{c}}\right), 115.1$ $\left(C_{\mathrm{b}}\right), 100.9\left(C_{1 \mathrm{gal}}\right), 100.4\left(C_{1 \mathrm{glc}}\right), 76.1\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.4\left(C_{2 \mathrm{glc}}\right), 70.8\left(C_{3 g a l}\right), 70.5\left(C_{5 g a l}\right), 70.4,70.3$, 70.2, 70.2, 70.0, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \mathrm{gal}}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.5\left(\mathrm{C}_{4 \mathrm{gal}}\right), 64.4\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{6 \mathrm{glc}}\right)$, $61.8\left(C_{q}\right), 60.6\left(C_{6 g a l}\right), 60.3\left(\mathrm{NCH}_{2}\right), 52.5\left(\mathrm{HNCOCH}_{2} \mathrm{~N}_{\text {triazole }}\right), 49.9\left(\mathrm{OCH}_{2}\right), 20.7,20.7,20.6,20.5,20.5,20.4(7 \times \mathrm{s}$, COCH_{3}).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.0-9.6 (m, 3P).
$\boldsymbol{m} / \mathbf{z}\left(E I^{+}-\mathrm{MS}\right)$ for $\mathrm{C}_{756} \mathrm{H}_{1068} \mathrm{~N}_{81} \mathrm{O}_{414} \mathrm{P}_{3}=18008.6[\mathrm{M}+\mathrm{H}]^{+}$; found 18008.5 (after deconvolution).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.48 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.5 \mathrm{~nm}$.
GPC measurements (THF): $M_{\mathrm{w}}=23790 ; M_{\mathrm{n}}=23540, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.011$
$\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=21740 ; M_{\mathrm{n}}=21350, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.018$.

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $17\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S66. gCOSY spectrum of compound 17

Figure S67. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $17\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S68. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $17\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S69. ESI ${ }^{+}$-MS (deconvolution) spectrum of compound 17

Polydispersity(Mw/Mn): 1.011 ± 0.128 (138)
Polydispersity(Mz/Mn) : 1.021 ± 0.226 (22\%)

Molar Mass Moments $(\mathbf{g} / \mathrm{mol})$		
Mn	$: 2.354 \mathrm{e}+04$	(8%)
Mw	$: 2.379 \mathrm{e}+04$	(8%)
Mz	$:$	$2.403 \mathrm{e}+04$
	(20%)	

Figure S70. GPC trace of compound 17

Polydispersity(Mw/Mn) : 1.018 ± 0.184 (18\%)
Polydispersity(Mz/Mn) : 1.041 ± 0.331 (32\%)

Molar Mass Moments (g/mol)

Mn	$:$	$2.135 \mathrm{e}+04$	(12%)
Mw	\vdots	$2.174 \mathrm{e}+04$	(12%)
Mz	$:$	$2.222 \mathrm{e}+04$	(28%)

Figure S71. GPC trace (in $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)$) of compound 17

Hydroxylated hexavalent glycocluster 18

Acetylated compound 16 ($43.0 \mathrm{mg}, 7.11 \mu \mathrm{~mol}$) was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}$ ($5 \mathrm{~mL}, 4: 1$) and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 24 h .. The solvent was then removed with a Pasteur pipette and another dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected hexamer 18 as a white solid ($25.0 \mathrm{mg}, 5.84 \mu \mathrm{~mol}$) in an 82% yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 7.99 ($\mathrm{s}, 6 \mathrm{H}, H_{\text {triazole }}$), 6.73 (br s, $24 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), 5.03 (br s, $12 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 4.51 (br s, 12H, $\mathrm{CH}_{2} \mathrm{~N}$), 4.46-4.43 (m, 12H, $H_{1 \mathrm{glc}}, H_{1 \mathrm{gal}}$), 3.98-3.84 (m, 18H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$, LacOCHHCH2), 3.82-3.47 (m, 132H, $H_{3 g l c}, H_{2 g a l}, H_{3 g a l}, H_{6 \text { bglc }}, H_{4 g a l}, H_{6 a g a l}, H_{6 \text { bgal }}, H_{6 a g l}, H_{5 g a l}, H_{5 g l c}, H_{4 g 1 c}$, LacOCHHCH $\left.H_{2}, \mathrm{OCH}_{2}\right), 3.33\left(\mathrm{t}_{\text {app }}, 6 \mathrm{H}, H_{2 g l c}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $155.6\left(C_{\mathrm{a}}\right), 144.6\left(C_{\mathrm{d}}\right), 143.7\left(C_{\text {triazole }}=\mathrm{CH}\right), 125.9\left(\mathrm{C}_{\text {triazole }}=C \mathrm{H}\right), 122.4\left(C_{\mathrm{c}}\right), 116.3$ $\left(C_{\mathrm{b}}\right), 103.7\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5\left(C_{2 \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right)$, 70.3, 70.2, 70.2, 69.4, $\left(\mathrm{OCH}_{2}\right)$, $69.3\left(C_{4 g a l}\right)$, $69.2\left(\mathrm{OCH}_{2}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.7\left(C_{6 g \mathrm{c}}\right), 60.8\left(C_{6 g a l}\right), 50.7\left(\mathrm{NCH}_{2}\right)$.
${ }^{31}$ P NMR ($\left.122 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 10.2(\mathrm{~s}, 3 \mathrm{P})$.
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}$-HRMS) for $\mathrm{C}_{174} \mathrm{H}_{264} \mathrm{~N}_{21} \mathrm{O}_{96} \mathrm{P}_{3}=1070.1481[\mathrm{M}+4 \mathrm{H}]^{4+}$, found 1070.1473; $2139.2890[M+2 \mathrm{H}]^{2+}$, found 2139.2886.

NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=1.10 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=3.6 \mathrm{~nm}$.

Figure $\mathbf{S 7 2} .^{1} \mathrm{H}$ NMR spectrum of compound $18\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S73. gCOSY spectrum of compound 18

Figure S74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $18\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference)

Figure S75. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $18\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$
MS Spectrum

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed m/z	Calc m/z	Diff (ppm)
$(\mathrm{M}+5 \mathrm{Na})+5$	C 174 H 264 N 21 Na 5096 P 3	963.12	878.30523	878.30191	3.78
$(\mathrm{M}+4 \mathrm{H})+4$	C 174 H 268 N 21096 P 3	2430.45	1070.14729	1070.14814	-0.79
$(\mathrm{M}+4 \mathrm{Na})+4$	C 174 H 264 N 21 Na 4096 P 3	22308.58	1092.12983	1092.13008	-0.23
$(\mathrm{M}+3 \mathrm{H})+3$	C 174 H 267 N 21096 P 3	21826.74	1426.5281	1426.52843	-0.23
$(\mathrm{M}+3 \mathrm{Na})+3$	C 174 H 264 N 21 Na 3096 P 3	26206.53	1448.50953	1448.51037	-0.58
$(\mathrm{M}+2 \mathrm{H})+2$	C 174 H 266 N 21096 P 3	1185.92	2139.28859	2139.289	-0.19
$(\mathrm{M}+2 \mathrm{Na})+2$	C 174 H 264 N 21 Na 2096 P 3	859.67	2161.26644	2161.27095	-2.08

Figure S76. ESI^{+}-HRMS spectrum of compound 18

Hydroxylated octadecavalent glycodendrimer 19

Acetylated compound $17(60.0 \mathrm{mg}, 3.33 \mathrm{~mol})$ was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of MeOH/DCM ($5 \mathrm{~mL}, 4: 1$) is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected derivative 19 as a white solid ($39.0 \mathrm{mg}, 3.07 \mu \mathrm{~mol}, \mathbf{9 0 \%}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 8.06-7.96 (m, $24 \mathrm{H}, H_{\text {triazole }}$), 6.84-6.77 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) $5.20-5.14(\mathrm{~m}, 24 \mathrm{H}$, $\mathrm{NHCOCH}_{2} \mathrm{~N}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 4.57-4.50 (m, 72H, $\mathrm{CH}_{2} \mathrm{~N}, \mathrm{C}_{\text {q.triazole }} \mathrm{CH}_{2} \mathrm{O}$), 4.49-4.44 (m, 36H, $H_{\text {1glc }}, H_{\text {1gal }}$), 4.02-3.55 (m, 486,
$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{3 g l c}, H_{2 g a l}, H_{3 g a l}, H_{6 \text { bglc }}, H_{6 \text { agal }}, H_{6 \text { bgal }}, H_{6 a g l}, H_{5 g a l}, H_{5 g l c}, H_{4 g l c}, H_{4 g a l}$, LacOCH$\left._{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2}, \mathrm{NHC}_{q} \mathrm{CH}_{2} \mathrm{O}\right), 3.22$ ($\mathrm{t}_{\text {app }}, 18 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 167.1(\mathrm{CONH})$, $156.6\left(C_{\mathrm{a}}\right), 144.6\left(C_{\mathrm{d}}\right)$, $143.7\left(C_{\text {triazole }}=\mathrm{CH}\right), 127.0\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $125.9\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $122.4\left(C_{\mathrm{c}}\right), 116.3\left(C_{\mathrm{b}}\right)$, $103.6\left(C_{1 \mathrm{gal})}\right.$, $102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right)$, $73.5\left(C_{2 g \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3,70.2,70.2,70.2,70.1\left(\mathrm{OCH}_{2}\right), 69.3\left(C_{4 \mathrm{gal}}\right), 69.2\left(\mathrm{OCH}_{2}\right), 68.1\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right)$, $64.2\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{q}\right), 61.7\left(C_{6 g \mathrm{lc}}\right), 60.9\left(\mathrm{C}_{6 \mathrm{gal}}\right), 60.8\left(\mathrm{OCH}_{2}\right), 52.9\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}\right), 50.6\left(\mathrm{CH}_{2} \mathrm{~N}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 10.2 (s, 3P).
$\boldsymbol{m} / \mathbf{z}$ (ESI ${ }^{+}$-HRMS) for $\mathrm{C}_{504} \mathrm{H}_{816} \mathrm{~N}_{81} \mathrm{O}_{288} \mathrm{P}_{3}=12712.2$, found 12711.7 ($[\mathrm{M}+\mathrm{H}]^{+}$, after deconvolution).
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.67 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.9 \mathrm{~nm}$.

Figure S77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $19\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S78. gCOSY spectrum of compound 19

Figure $\mathrm{S} 79 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $19\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference)

Figure S80. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 19 ($\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}$)

User Spectra

Figure S81. ESI ${ }^{+}$-MS spectrum (deconvolution) of compound 19

Protected dumbbell-shape decavalent glycocluster 21

To a solution of known dipropargylated tretra(ethylene)glycol 20^{5} ($1.52 \mathrm{mg}, 5.63 \mu \mathrm{~mol}, 1.0$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\mathrm{anh}}(4 \mathrm{~mL})$, were added azido dendron derivative 15 ($65.0 \mathrm{mg}, 12.4 \mu \mathrm{~mol}, 2.2 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(8.4 \mathrm{mg}, 33.0$ $\mu \mathrm{mol}, 6.0$ eq.) and sodium ascorbate ($6.7 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 6.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$ and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound 21 ($44.0 \mathrm{mg}, 4.08 \mu \mathrm{~mol}, 73 \%$) as a yellowish foam.
$\mathbf{R}_{\mathbf{f}}=0.50, \mathrm{DCM} / \mathrm{MeOH} 90: 10$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $10.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}\right.$), $7.89\left(\mathrm{~s}, 3 \mathrm{H}, H_{\text {triazole }}\right), 7.85-7.80\left(2 \times \mathrm{s}, 9 \mathrm{H}, H_{\text {triazole }}\right), 7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{b^{\prime}}\right), 6.96-6.69\left(\mathrm{~m}, 40 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}\right), 6.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{c^{\prime}}\right), 5.40\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 5.30\left(\mathrm{~d}_{\mathrm{app}}\right.$, $\left.10 \mathrm{H}, H_{4 \text { gal }}\right), 5.18-5.07\left(\mathrm{~m}, 40 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \text { gal }}\right.$), $4.94\left(\mathrm{dd},{ }^{3} J_{2,3}=2.3 \mathrm{~Hz},{ }^{3} J_{3,4}=3.5 \mathrm{~Hz}, 10 \mathrm{H}, H_{3 \text { gal }}\right), 4.84\left(\mathrm{t}_{\text {app }}, 10 \mathrm{H}\right.$, $H_{2 g l c}$), 4.64 (br s, $4 \mathrm{H}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}$), 4.55-4.46 (m,50H, CH N_{2}, $H_{1 \mathrm{glc}}, H_{6 \mathrm{aglc}}, H_{1 \mathrm{gal}}$), 4.13-4.05 (m, 30H, $H_{6 \mathrm{bglc}}$, $H_{6 \mathrm{agal}}$, $H_{6 \mathrm{bgal}}$), 3.86-3.54 (m, 186H, $\left.\mathrm{H}_{5 \mathrm{gal}}, H_{5 \mathrm{glc}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}\right)$, 2.17-1.92 $\left(7 \times \mathrm{s}, 210 \mathrm{H}, \mathrm{COCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 170.2,170.2,170.0,169.9,169.6,169.5,169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 164.0(\mathrm{C}=\mathrm{O}), 155.3$ $+155.2\left(C_{\mathrm{a}}\right), 146.6\left(C_{\mathrm{d}^{\prime}}\right), 144.5\left(C_{\mathrm{d}}\right), 144.4\left(C_{\mathrm{d}}\right), 143.8\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 134.5$ $\left(C_{\mathrm{a}^{\prime}}\right), 124.7\left(\mathrm{CH}_{\text {triazoole }}\right)$, $124.7\left(\mathrm{CH}_{\text {triazole }}\right)$, $124.0\left(\mathrm{CH}_{\text {triazole }}\right)$, $121.9\left(C_{\mathrm{c}}\right)$, $121.8\left(C_{\mathrm{c}}\right), 121.7\left(C_{\mathrm{b}^{\prime}}\right), 121.6\left(C_{\mathrm{C}^{\prime}}\right), 120.9\left(C_{\mathrm{c}^{\prime}}\right)$, $120.9\left(C_{\mathrm{c}^{\prime}}\right), 120.7\left(C_{\mathrm{c}^{\prime}}\right), 115.3\left(C_{\mathrm{b}}\right), 115.1\left(C_{\mathrm{b}}\right), 100.9\left(C_{1 \mathrm{gal}}\right), 100.4\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.6\left(C_{5 \mathrm{glc}}\right), 72.5$ $\left(C_{2 g \mathrm{glc}}\right), 71.5\left(C_{3 \mathrm{gal}}\right), 70.8\left(C_{5 g \mathrm{al}}\right), 70.6,70.5,70.5,70.4,70.4,70.3,70.3,70.3,70.2,70.1,70.1,69.4,69.2,69.2\left(\mathrm{OCH}_{2}\right)$,

[^5]$68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \text { gal }}\right)$, $64.3\left(\mathrm{C}_{\text {q-triazole }} C H_{2} \mathrm{OCH}_{2}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.8\left(C_{6 g l c}\right), 61.6\left(C_{6 g a l}\right), 60.6,52.4$ $\left(\mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}\right), 50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 20.8,20.7,20.6,20.5,20.5,20.4\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.8-9.4 (m, 6P).
$\boldsymbol{m} / \mathbf{z}$ (ESI $\left.{ }^{+}-\mathrm{MS}\right)$ for $\mathrm{C}_{460} \mathrm{H}_{616} \mathrm{~N}_{44} \mathrm{O}_{239} \mathrm{P}_{6}=10772.8[\mathrm{M}+\mathrm{H}]^{+}$; found 10772.5 (After deconvolution).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=2.47 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=3.3 \mathrm{~nm}$.
GPC measurements (THF): $M_{\mathrm{w}}=14710 ; M_{\mathrm{n}}=13860, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.061$
$\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=10410 ; M_{\mathrm{n}}=10180, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.023$

Figure S82. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S83. gCOSY spectrum of compound 21

Figure S84. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 1}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S85. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $21\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S86. ESI^{+}-MS spectrum (deconvolution) of compound 21

Polydispersity(Mw/Mn) : 1.061 ± 0.144 (148)
Polydispersity(Mz/Mn) : 2.291 ± 0.838 (378)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Mn	\vdots	$1.386 \mathrm{e}+04$	(9%)
Mw	\vdots	$1.471 \mathrm{e}+04$	(10%)
Mz	\vdots	$3.176 \mathrm{e}+04$	(35%)

Figure S87. GPC trace (in THF) for compound 21

Polydispersity(Mw/Mn) : 1.023 ± 0.187 (18\%)
Polydispersity(Mz/Mn) : 1.051 ± 0.333 (32\%)

Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Figure S88. GPC trace (in $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)$) for compound 21

Hydroxylated dumbbell-shape decavalent glycocluster 22

Acetylated compound 21 ($28.0 \mathrm{mg}, 2.60 \mu \mathrm{~mol}$) was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}$ ($5 \mathrm{~mL}, 4: 1$) and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected derivative 22 as an off-white solid ($18.5 \mathrm{mg}, 2.55 \mu \mathrm{~mol}, \mathbf{9 8 \%}$).
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 7.99\left(\mathrm{~s}, 12 \mathrm{H}, H_{\text {triazole }}\right), 7.28\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{b}\right), 6.75-6.50(\mathrm{~m}, 44 \mathrm{H}, \mathrm{CH} \mathrm{Har}), 5.29(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CO}$), 4.96 (br s, 20H, $\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 4.53-4.39 (m, 44H, $\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}, H_{\text {1gle }}, H_{\text {1gal }}$), $3.90(\mathrm{~m}, 30 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$, LacOCHHCH L_{2}, 3.82-3.47 (m, 236H, $H_{3 g l c}, H_{2 g a l}, H_{3 \text { gal }}, H_{6 \mathrm{bglc}}, H_{4 g a l}, H_{6 a g a l}, H_{6 \mathrm{bgal}}, H_{6 a g l c}, H_{5 g a l}, H_{5 g l c}, H_{4 g \mathrm{c}}$, LacOCHHCH ${ }_{2}, \mathrm{OCH}_{2}$), 3.33 ($\mathrm{t}_{\text {app }}, 10 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): $165.3(C=\mathrm{O}), 156.3\left(C_{\mathrm{a}}\right), 144.8\left(C_{\mathrm{d}^{\prime}}\right), 144.5\left(C_{\mathrm{d}}\right), 143.7\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.7$ $\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $126.8\left(C_{\mathrm{a}^{\prime}}\right), 125.9\left(\mathrm{C}_{\text {triazole }}=C H\right), 122.4\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.8\left(C_{\mathrm{c}}+C_{\mathrm{b}^{\prime}}+C_{\mathrm{c}^{\prime}}\right), 116.2\left(C_{\mathrm{b}}\right), 115.1\left(C_{\mathrm{b}}\right), 103.7$ $\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5\left(C_{2 \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3,70.2$, 70.0, 69.4, $\left(\mathrm{OCH}_{2}\right), 69.3\left(\mathrm{C}_{4 \mathrm{gal}}\right), 69.2\left(\mathrm{OCH}_{2}\right), 63.8\left(\mathrm{C}_{\text {q-triazole }} C H_{2} \mathrm{OCH}_{2}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.7\left(C_{6 \mathrm{glc}}\right), 60.7\left(C_{6 g a l}\right), 53.2$ ($\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}$), $50.7\left(\mathrm{NCH}_{2}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 10.2 (s, 6P).
$\boldsymbol{m} / \mathbf{z}$ (ESI ${ }^{+}-\mathrm{MS}$) for $\mathrm{C}_{320} \mathrm{H}_{476} \mathrm{~N}_{44} \mathrm{O}_{169} \mathrm{P}_{3}=7830.3\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 7829.9 (After deconvolution).
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.75 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.3 \mathrm{~nm}$.

Figure S89. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $22\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S90. gCOSY spectrum of compound $\mathbf{2 2}$

Figure $\mathrm{S} 91 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $22\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right.$, acetone as reference)

Figure S92. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $22\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

Figure S93. ESI ${ }^{+}$-MS spectrum (deconvolution) of compound 22

Heteromultifunctional Janus-type glycocluster 23

To a solution of propargylated derivative $9\left(11.4 \mathrm{mg}, 9.46 \mu \mathrm{~mol}, 1.1 \mathrm{eq}\right.$.) in a $1: 1 \mathrm{mixture}$ of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}$ (4 mL), were added azido dendron 15 ($45.0 \mathrm{mg}, 8.57 \mu \mathrm{~mol}, 1.0$ eq.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(23.0 \mathrm{mg}, 92.0 \mu \mathrm{~mol}, 11.1 \mathrm{eq}$.) and sodium ascorbate ($11.9 \mathrm{mg}, 92.0 \mu \mathrm{~mol}, 11.1$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound 23 ($40 \mathrm{mg}, 6.2 \mu \mathrm{~mol}, \mathbf{7 2 \%}$) as an off-white foam
$\mathbf{R}_{\mathrm{f}}=0.29, \mathrm{DCM} / \mathrm{MeOH} 94: 6$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {core }}\right), 8.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} H_{\text {ext }}\right), 8.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{\text {ext }}\right), 8.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} H_{\text {ext }}\right)$, $8.05\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole int }}\right), 7.90\left(\mathrm{~s} ; 2 \mathrm{H}, H_{\text {triazole ext }}\right), 7.85\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole ext }}\right), 7.84\left(\mathrm{~s}, 2 \mathrm{H}, H_{\text {triazole ext }}\right), 7.32\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C} H_{\mathrm{b}^{\prime}}, 3 \mathrm{~J}=8.6\right.$ Hz), $7.23\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{\mathrm{b}^{\prime \prime}}\right), 6.98\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{c}^{\prime}}\right)$, $6.91-6.44\left(\mathrm{~m}, 34 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{c}^{\prime \prime}}\right), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH} \mathrm{H}_{2} \mathrm{CONH}\right.$), 5.33 (br s, $\left.5 \mathrm{H}, H_{4 \text { gal }}\right), 5.18-5.08\left(\mathrm{~m}, 22 \mathrm{H}, H_{3 g l \mathrm{c}}, \mathrm{C}_{\mathrm{q} \text { triazole }} \mathrm{CH}_{2} \mathrm{O}, H_{2 \text { gal }}\right), 4.94\left(\mathrm{~d}_{\text {app }}, 5 \mathrm{H}, H_{3 g a 1}\right), 4.86\left(\mathrm{~m}, 5 \mathrm{H}, H_{2 \text { 2glc }}\right), 4.55-4.46(\mathrm{~m}$, $\left.25 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \mathrm{aglc}}, H_{1 \mathrm{gal}}\right), 4.22\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Cl}\right), 4.18\left(\mathrm{~s}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Cl}\right), 4.11-4.06\left(\mathrm{~m}, 15 \mathrm{H}, H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}\right), 3.87-$ 3.57 (m, 85H, $H_{5 \text { gal }}, H_{5 g l c}, H_{4 g l c}, \mathrm{OCH}_{2}$), 2.13-1.95 (m, 105H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.2, 170.0, 169.9, 169.6, 169.5, 169.0 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 164.6 (CONH), $164.5(C O N H), 163.8(C=O), 155.3\left(C_{a^{\prime \prime}}\right), 155.2+155.2\left(C_{\mathrm{a}}\right), 147.0\left(C_{d^{\prime \prime}}\right), 146.8\left(C_{d^{\prime}}\right), 144.5\left(C_{d}\right), 144.5\left(C_{d^{\prime \prime}}\right), 144.2$ $\left(C_{\mathrm{d}}\right)$, $143.8\left(C_{\text {triazole int }}=\mathrm{CH}\right)$, $143.7\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.2\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $134.6\left(C_{\mathrm{a}^{\prime \prime}}\right)$, $134.5\left(C_{\mathrm{a}^{\prime}}\right), 124.7\left(\mathrm{C}_{\text {triazole int }}=C H\right)$, $124.4\left(\mathrm{C}_{\text {triazole }}=\mathrm{CH}\right)$, $124.0\left(\mathrm{C}_{\text {triazole }}=\mathrm{CH}\right)$, $122.0\left(C_{\mathrm{b}^{\prime \prime}}\right), 121.9\left(C_{\mathrm{b}^{\prime \prime}}\right), 121.9\left(C_{\mathrm{c}}\right), 121.8\left(C_{\mathrm{c}}\right), 121.7\left(C_{\mathrm{b}^{\prime}}\right), 121.6\left(C_{\mathrm{c}^{\prime}}\right), 121.2$
$\left(C_{\mathrm{c}^{\prime}}\right), 121.1\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{C}^{\prime}}\right), 120.4\left(C_{\mathrm{c}^{\prime}}\right), 120.3\left(C_{\mathrm{c}^{\prime \prime}}\right), 115.3\left(C_{\mathrm{b}}\right), 115.2\left(C_{\mathrm{b}}\right), 115.0\left(C_{\mathrm{b}}\right), 100.9\left(C_{1 \mathrm{gal}}\right), 100.4\left(C_{1 \mathrm{glc}}\right)$, $76.1\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 72.4\left(C_{2 \mathrm{glc}}\right), 71.5\left(C_{3 \mathrm{gal}}\right), 70.8\left(C_{5 \mathrm{gal}}\right), 70.5,70.4,70.4,70.3,70.3,70.3,70.1,70.1$, 69.2, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.8\left(C_{6 \mathrm{glc}}\right), 61.6\left(C_{6 \mathrm{gal}}\right), 60.6\left(\mathrm{OCH}_{2}\right), 52.9$ $\left(\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.3\left(\mathrm{NCH}_{2}\right), 50.2\left(\mathrm{NCH}_{2}\right), 43.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 43.1\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 20.7,20.7,20.6,20.5,20.5,20.4(7 \times \mathrm{s}$, COCH_{3}).
${ }^{31} \mathbf{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.9-8.5 (m, 6P, P-O).
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{272} \mathrm{H}_{339} \mathrm{Cl}_{5} \mathrm{~N}_{30} \mathrm{O}_{129} \mathrm{P}_{6}=1636.6848[\mathrm{M}+4 \mathrm{Na}]^{4+}$; found 1636.6855, $2151.9342[\mathrm{M}+3 \mathrm{Na}]^{3+}$, found 2151.9363.

GPC measurements (THF): $M_{\mathrm{w}}=7981 ; M_{\mathrm{n}}=7889, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.012$.

Figure S94. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $23\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S95. gCOSY spectrum of compound 23

Figure S96. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 3}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S97. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $23\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

MS Spectrum Peak List

Ion	Formula	Abund	Observed m/z	Calc m/z	Diff(ppm)
$(\mathrm{M}+4 \mathrm{Na})+4$	C 272 H 339 Cl 5 N 30 Na 40129 P 6	1052.5	1636.68549	1636.68481	0.68
$(\mathrm{M}+3 \mathrm{H})+3$	C 272 H 342 Cl 5 N 300129 P 6	576.1	2151.93629	2151.93423	2.07
$(\mathrm{M}+3 \mathrm{Na})+3$	$\mathrm{C} 272 \mathrm{H} 339 \mathrm{Cl} 5 \mathrm{~N} 30 \mathrm{Na3O129P} 6$	849.8	2173.91742	2173.91617	1.25

Figure S98. ESI $^{+}$-HRMS spectrum of compound 23

Figure S99. GPC trace (in THF) for compound 23

Protected pentadecavalent glycodendrimer 25

To a solution of known tripropargylated core $24^{6}\left(1.27 \mathrm{mg}, 3.91 \mu \mathrm{~mol}, 1.0\right.$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh. }}$. (4 mL), were added azido dendron derivative 15 ($80 \mathrm{mg}, 0.015 \mathrm{mmol}, 3.9 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($7.8 \mathrm{mg}, 0.031 \mathrm{mmol}, 8.0 \mathrm{eq}$.) and sodium ascorbate ($6.2 \mathrm{mg}, 0.031 \mathrm{mmol}, 8.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate $(10 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{CI}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness under vacuum with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound 25 ($54 \mathrm{mg}, 3.4 \mu \mathrm{~mol}, \mathbf{8 6 \%}$) as a white foam.

[^6]$\mathbf{R}_{\mathbf{f}}=0.38$, DCM/MeOH 93:7.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.1 (br s, 3H, NH), 8.49 (br s, $3 \mathrm{H}, \mathrm{NH}$), 7.98 (s, $3 \mathrm{H}, \mathrm{CH}_{\text {core }}$), 7.91-7.83 (m, 18H, $H_{\text {triazole }}$), 7.36-7.30 (m, 6H, CH $b_{b^{\prime}}$, 6.97-6.48 (m, 66H, CH $H_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}$), $5.40\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right.$), $5.32\left(\mathrm{~d}_{\text {app }}\right.$, $\left.15 \mathrm{H}, H_{4 \mathrm{gal}}\right), 5.20-5.04\left(\mathrm{~m}, 60 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, H_{2 \mathrm{gal}}\right), 4.93\left(\mathrm{dd},{ }^{3} J_{2,3}=3.3 \mathrm{~Hz},{ }^{3} J_{3,4}=7.1 \mathrm{~Hz}, 15 \mathrm{H}, H_{3 g a 1}\right), 4.87-4.82(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}$), 4.63 (br s, $6 \mathrm{H}, \mathrm{CONHCH}_{2} \mathrm{C}_{q}$), 4.54-4.42 (m, $75 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \mathrm{aglc}}, H_{1 \mathrm{gal}}$), 4.12-4.04 (m,45H, $H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}$, $\left.H_{6 \text { bgal }}\right)$, 3.86-3.54 (m, 255H, $H_{5 \text { gal }}, H_{5 g l}, H_{4 g l}, \mathrm{OCH}_{2}$), 2.11-1.92 (m, 315H, COCH_{3}).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.4, 170.3, 170.2, 170.1, 169.9, 169.7, $169.5\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 165.0$ $\left(\mathrm{NHC}=\mathrm{O}_{\text {core }}\right), 163.9(\mathrm{NHC}=\mathrm{O}), 155.3\left(C_{\mathrm{a}}\right), 155.3\left(C_{\mathrm{a}}\right), 146.5\left(C_{\mathrm{d}^{\prime}}\right), 144.4\left(C_{\mathrm{d}}\right), 144.1\left(C_{\mathrm{d}}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3$ $\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $133.8\left(\mathrm{C}_{\text {-corere }}\right)$, $129.1\left(\mathrm{CH}_{\text {core }}\right)$, $124.7\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $124.5\left(C_{\mathrm{a}^{\prime}}\right)$, $124.1\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.8\left(C_{\mathrm{c}}\right), 120.9\left(C_{\mathrm{c}^{\prime}}\right)$, $120.7\left(C_{\mathrm{b}^{\prime}}\right), 115.2\left(C_{\mathrm{b}}\right), 115.1\left(C_{\mathrm{b}}\right), 101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9$ $\left(C_{3 \text { gal }}\right), 70.5\left(C_{5 \text { gal }}\right), 70.5,70.4,70.4,70.3,70.2,70.1,70.1,69.3,69.1,69.0\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5$ $\left(C_{4 g a l}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{glc}}\right), 61.6\left(\mathrm{OCH}_{2}\right), 60.7\left(C_{6 \text { gal }}\right)$,, $52.7\left(\mathrm{~N}_{\text {triazole }} C \mathrm{H}_{2} \mathrm{CONH}\right), 50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right)$, 35.8 ($\mathrm{C}_{\text {core }} \mathrm{CONHCH}_{2} \mathrm{C}_{\text {triazole }}$), 29.6, 20.8, 20.7, 20.6, 20.5, 20.5, 20.4 (7×s, COCH_{3}).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.9-9.5 (m, 9P). $\boldsymbol{m} / \mathbf{z}$ (ESI $\left.{ }^{+}-\mathrm{MS}\right)$ for $\mathrm{C}_{687} \mathrm{H}_{906} \mathrm{~N}_{69} \mathrm{O}_{354} \mathrm{P}_{9}=16074.6[\mathrm{M}+\mathrm{H}]^{+}$; found 16074.1 (After deconvolution).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.65 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.1 \mathrm{~nm}$.
GPC measurements (THF): $M_{\mathrm{w}}=18970 ; M_{\mathrm{n}}=18820, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.008$.

Figure S100. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 5}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S101. gCOSY spectrum of compound 25

Figure S102. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $25\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

\begin{abstract}

$\begin{array}{llllllllllll} 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 \\ \hline 1 \end{array}$																										

Figure S103. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{2 5}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S104. $\mathrm{ESI}^{+}-\mathrm{MS}$ spectra (deconvolution) of compound 25

Polydispersity(Mw/Mn) : 1.008 ± 0.126 (138)
Polydispersity(Mz/Mn) : 1.014 ± 0.221 (22\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Mn	$:$	$1.882 \mathrm{e}+04$	$\left(8 \frac{1}{8}\right)$
Mw	\vdots	$1.897 e+04$	(8%)
Mz	$:$	$1.909 \mathrm{e}+04$	(19%)

Figure S105. GPC trace (in THF) for compound 25

Protected tricontavalent glycodendrimer 26

To a solution of hexapropargylated cyclotriphosphazene derivative $1(2.40 \mathrm{mg}, 2.36 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in a $1: 1 \mathrm{mixture}$ of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added azido derivative $15(100 \mathrm{mg}, 19.0 \mu \mathrm{~mol}, 8.1 \mathrm{eq}$.$) , \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.71 \mathrm{mg}, 18.8 \mu \mathrm{~mol}$, 8.0 eq.) and sodium ascorbate ($3.74 \mathrm{mg}, 18.8 \mu \mathrm{~mol}, 8.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography (SiO_{2}, $\mathrm{DCM} / \mathrm{MeOH}$ 100:0 to 85:15) afforded desired multivalent compound 26 ($59 \mathrm{mg}, 1.81 \mu \mathrm{~mol}, \mathbf{7 7 \%}$) as a white foam.
$\mathbf{R}_{\mathbf{f}}=0.42, \mathrm{DCM} / \mathrm{MeOH} 92: 8$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.1(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{NH}), 7.98\left(\mathrm{~s}, 6 \mathrm{H}, H_{\text {triazole }}\right), 7.86-7.80\left(\mathrm{~m}, 30 \mathrm{H}, H_{\text {triazole }}\right), 7.36-7.30(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{CH}_{b^{\prime}}$, 6.97-6.54 (m, 156H, $\mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}$), $5.40\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right.$), $5.32\left(\mathrm{~d}_{\text {app }}, 30 \mathrm{H}, \mathrm{H}_{4 \mathrm{gal}}\right), 5.17-5.04$ (m, 132H, $H_{3 g l c}, \mathrm{C}_{q} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \mathrm{gal}}$), 4.93 (dd, ${ }^{3} \mathrm{~J}_{2,3}=3.3 \mathrm{~Hz},{ }^{3} J_{3,4}=7.1 \mathrm{~Hz}, 30 \mathrm{H}, H_{3 g a l}$), 4.87-4.82 (m,30H, H ${ }_{2 \mathrm{glc}}$), 4.54-4.42 $\left(\mathrm{m}, 150 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \text { aglc }}, H_{1 \text { gal }}\right), 4.12-4.04\left(\mathrm{~m}, 90 \mathrm{H}, H_{6 \mathrm{bgl}}, H_{6 \text { agal }}, H_{6 \mathrm{bgal}}\right), 3.90-3.45\left(510 \mathrm{H}, H_{5 \text { gal }}, H_{5 \mathrm{glc}}, H_{4 \mathrm{glc}}, \mathrm{OCH} H_{2}\right)$, 2.11-1.92 (m, 630H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.9, 169.7, 169.5 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 163.9 ($\mathrm{C}=\mathrm{O}$), 155.2 $\left(C_{\mathrm{a}}\right), 146.5\left(C_{\mathrm{d}^{\prime}}\right), 144.4\left(C_{\mathrm{d}}\right), 144.1\left(C_{\mathrm{d}}\right), 143.4\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.2\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $134.8\left(C_{\mathrm{a}^{\prime}}\right), 125.2\left(\mathrm{C}_{\text {triazole }}=C H\right), 124.6$ $\left(\mathrm{C}_{\text {triazole }}=C H\right), 124.1\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.9\left(C_{\mathrm{c}^{\prime}}\right), 121.7\left(C_{\mathrm{b}^{\prime}}\right), 120.9\left(C_{\mathrm{c}}\right), 120.7\left(C_{\mathrm{c}}\right), 115.9\left(C_{\mathrm{b}}\right), 115.2\left(C_{\mathrm{b}}\right), 115.1\left(C_{\mathrm{b}}\right)$, $101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.5,70.4,70.4$, $70.3,70.2,70.1,70.1,69.3,69.1,69.0\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \mathrm{gal}}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{glc}}\right)$, $61.6\left(\mathrm{OCH}_{2}\right), 60.7\left(\mathrm{C}_{6 \mathrm{gal}}\right)$, $52.7\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 29.6,20.8,20.7,20.6,20.5,20.5,20.4$ ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.2-9.7 (m, 21P).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}-\mathrm{MS}$) for $\mathrm{C}_{1392} \mathrm{H}_{1824} \mathrm{~N}_{135} \mathrm{O}_{714} \mathrm{P}_{21}=32523.3\left[\mathrm{M}^{+} \mathrm{H}^{+}\right.$; found 32523.7 (After deconvolution) with signals corresponding to losses of monomers (~876) and dendron(s) (~5290)).

MALDI-TOF (DHB matrix) : 32550.1, with signals corresponding to losses of monomers (~876) and dendron(s) (~5290)).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.08 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=7.5 \mathrm{~nm}$.
GPC measurements (THF): $M_{w}=33560 ; M_{\mathrm{n}}=33090, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.014$
$\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=35320 ; M_{\mathrm{n}}=34480, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.025$.

Figure S106. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S107. gCOSY spectrum of compound 26

Figure S108. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $26\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S109. HMQC spectrum of compound 26

100		80	70	60	50	40	30		10		10	20	-30	-40	-50	-60	-70	-80	
100	90	80	70	60	50	40	30	20	10	$\mathrm{f} 1(\mathrm{ppm})$	-10	-20	-30	-40	-50	-60	-70	-80	-90

Figure S110. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{2 6}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

User Spectra

Figure S111. $\mathrm{ESI}^{+}-\mathrm{MS}$ spectrum (deconvolution) of compound 26

Figure S112. MALDI-TOF (DHB matrix) of compound 26

Polydispersity(Mw/Mn) : 1.014 ± 0.126 (12\%)
Polydispersity(Mz/Mn): 1.031 ± 0.231 (22\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

$\mathbf{M n}$	$:$	$3.309 \mathrm{e}+04$	(8%)
$\mathbf{M w}$	$:$	$3.356 \mathrm{e}+04$	(8%)
$\mathbf{M z}$	$:$	$3.412 \mathrm{e}+04$	(20%)

Figure S113. GPC trace (in THF) for compound 26

$\begin{array}{llll}\text { Polydispersity }(M w / M n) & 1.025 \pm 0.176 & \text { (178) } \\ \text { Polydispersity(Mz/Mn) } & : & 1.049 \pm 0.304 \quad \text { (29\%) }\end{array}$
Molar Mass Moments (g/mol)

$\mathbf{M n}$	\vdots	$3.448 e+04$	(128)
$\mathbf{M w}$	\vdots	$3.532 e+04$	(118)
$\mathbf{M z}$	\vdots	$3.615 e+04$	(268)

Figure S114. GPC trace (in $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)$) for compound 26

Hydroxylated pentadecavalent glycodendrimer 27

Acetylated compound 25 ($50.0 \mathrm{mg}, 3.11 \mu \mathrm{~mol}$) was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}$ ($5 \mathrm{~mL}, 4: 1$) and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected derivative 27 as an off-white solid ($29.0 \mathrm{mg}, 2.49 \mu \mathrm{~mol}, \mathbf{8 0 \%}$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 8.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\text {core }}\right)$, 7.86-7.75 (m, 18H, $\left.H_{\text {triazole }}\right), 7.10\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{CH} H_{b}\right)$, 6.57-6.47 (m, $66 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}$), 5.17 (br s, $6 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}$), 4.96-4.82 (br s, $36 \mathrm{H}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}+\mathrm{CONHCH}_{2} \mathrm{C}_{q}$), 4.40-4.30 (m, 60H, $\left.\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CH}_{2}, H_{1 \text { glc }}, H_{1 \text { gal }}\right), 3.82\left(\mathrm{~m}, 45 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{LacOCH} H C H_{2}\right), 3.75-3.27\left(\mathrm{~m}, 330 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}, H_{2 \text { gal }}, H_{3 g a l}\right.$,

${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right)$: $167.1(C=\mathrm{O}), 165.2(C=\mathrm{O}), 156.6\left(C_{\mathrm{a}}\right), 146.8\left(C_{\mathrm{d}^{\prime}}\right), 145.5\left(C_{\mathrm{d}}\right), 144.5\left(C_{\mathrm{d}}\right), 143.6$ $\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.7\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $133.8\left(\mathrm{C}_{\text {q-core }}\right)$, $129.9\left(\mathrm{CH}_{\text {core }}\right)$, $125.9\left(\mathrm{C}_{\text {triazole }}=C H\right), 125.4\left(C_{\mathrm{a}^{\prime}}\right), 122.4\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.7\left(C_{\mathrm{c}}+C_{\mathrm{b}^{\prime}}+C_{\mathrm{c}^{\prime}}\right), 116.2\left(C_{\mathrm{b}}\right), 103.7\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5$ $\left(C_{2 g \mathrm{clc}}\right)$, $73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 g a l}\right), 70.3,70.2,70.0,69.4,\left(\mathrm{OCH}_{2}\right), 69.4\left(C_{4 \mathrm{gal}}\right), 69.2\left(\mathrm{OCH}_{2}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.7\left(C_{6 g 1 c}\right)$, $60.7\left(\mathrm{C}_{6 \mathrm{gal}}\right)$, $53.2\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}\right), 50.7\left(\mathrm{NCH}_{2}\right), 36.8\left(\mathrm{C}_{\text {core }} \mathrm{CONHCH}_{2} \mathrm{C}_{q}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 10.2 (s, 9P).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{477} \mathrm{H}_{696} \mathrm{~N}_{69} \mathrm{O}_{249} \mathrm{P}_{9}=11660.7[\mathrm{M}+\mathrm{H}]^{+}$, found 11660.6 (After deconvolution).
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.70 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.7 \mathrm{~nm}$.

Figure S115. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 7}\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S116. gCOSY spectrum of compound 27

Figure S117. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $27\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference) (insert: Zoom of the aromatic section)

Figure S118. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $27\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

Figure S119. ESI ${ }^{+}$-MS spectrum of compound 27

Hydroxylated tricontavalent glycodendrimer 28

Acetylated compound $26(50.0 \mathrm{mg}, 1.54 \mu \mathrm{~mol})$ was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}$ ($5 \mathrm{~mL}, 4: 1$) and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange
resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, Iyophilized to yield the fully deprotected derivative 28 as an off-white solid ($29.0 \mathrm{mg}, 1.22 \mu \mathrm{~mol}, \mathbf{9 3 \%}$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 7.99\left(\mathrm{~m}, 36 \mathrm{H}, H_{\text {triazole }}\right), 7.28\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{b}\right), 6.99\left(\mathrm{~m}, 156 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{c}, \mathrm{CH}_{c}, \mathrm{CH}_{\text {ar- }}\right.$ core), 5.10-4.90 (br s, $72 \mathrm{H}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}$), 4.56-4.41 (m, 132H, $\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}, H_{\text {tglc }}, H_{\text {1gal }}$), 3.93 (m, $\left.90 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{LacOCH} H \mathrm{CH}_{2}\right), 3.81-3.34\left(\mathrm{~m}, 690 \mathrm{H}, H_{3 g l c}, H_{2 g a l}, H_{3 g a l}, H_{6 \mathrm{bglc}}, H_{4 g a l}, H_{6 a g a l}, H_{6 \mathrm{bgal}}, H_{6 a g l c}, H_{5 g a l}, H_{5 g l c}\right.$, $\mathrm{H}_{4 \mathrm{glc}}$, $\mathrm{LacOCH} \mathrm{HCH}_{2}, \mathrm{OCH}_{2}, \mathrm{H}_{2 \mathrm{glc}}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 167.1$ ($C=0$) not visible, $165.2(C=\mathrm{O})$ not visible, $156.6\left(C_{\mathrm{a}}\right), 154.3\left(C_{\mathrm{a} \text {-core })}\right), 146.8$ $\left(C_{\mathrm{d}^{\prime}}\right), 145.5\left(C_{\mathrm{d}}\right), 144.6\left(C_{\mathrm{d}}\right), 143.7\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.7\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $136.5\left(C_{\mathrm{a}^{\prime}}\right), 125.9\left(\mathrm{C}_{\text {triazole }}=C H\right), 122.4$ $\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.0,120.7\left(C_{\mathrm{c}}+C_{\mathrm{b}^{\prime}}+C_{\mathrm{c}^{\prime}}\right), 116.2\left(C_{\mathrm{b}}, \mathrm{C}_{\mathrm{b} \text {-core }}\right), 103.7\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4$ $\left(C_{5 \text { glc }}\right), 75.0\left(C_{5 \text { gal }}\right), 73.5\left(C_{2 g 1 \mathrm{c}}\right), 73.2\left(C_{3 \text { gal }}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3,70.2,\left(\mathrm{OCH}_{2}\right), 69.4\left(C_{4 \mathrm{gal}}\right), 69.2\left(\mathrm{OCH}_{2}\right), 62.1$ $\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.7\left(C_{6 \mathrm{glc}}\right), 60.8\left(C_{6 \mathrm{gal}}\right), 53.2\left(\mathrm{~N}_{\text {triazole }} C H_{2} \mathrm{CO}\right), 50.7\left(\mathrm{NCH}_{2}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): 10.2 (s, 21P).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-TOF) for $\mathrm{C}_{972} \mathrm{H}_{1404} \mathrm{~N}_{135} \mathrm{O}_{504} \mathrm{P}_{21}=23694.6$, found 23755.9 (with signals corresponding to losses of dendron(s)).
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.56 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=7.2 \mathrm{~nm}$.

Figure S120. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $28\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S121. gCOSY spectrum of compound 28

Figure S122. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 8}\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference)

Figure S123. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{2 8}\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

Figure S124. MALDI-TOF (DHB matrix) spectrum for compound $26\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

AB_{15} glycodendron with a focal Cl 29

To a stirring solution of 6 ($9.8 \mathrm{mg}, 9.3 \mu \mathrm{~mol}, 1.0$ eq.) and dendron 14 ($174.2 \mathrm{mg}, 60.7 \mu \mathrm{~mol}, 6.5 \mathrm{eq}$) in dry THF (2.5 $\mathrm{mL})$ were added 2.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and a mixture of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(13.2 \mathrm{mg}, 52.8 \mu \mathrm{~mol}, 5.7$ eq.) and sodium ascorbate ($10.5 \mathrm{mg}, 52.8 \mu \mathrm{~mol}, 5.7$ eq.). After stirring for 3 hours at $50^{\circ} \mathrm{C}$ in a 20 mL vial, the reaction was left stirring at room temperature for 18 hours (additional $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{mg})$ and sodium ascorbate (4.0 mg) were incorporated in the mixture after 5 hours of reaction). EtOAc (50 mL) was added and the solution was washed successively with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 25 \mathrm{~mL})$, water $(2 \times 20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 100:0 to 93:7) afforded the desired compound 29 ($103.0 \mathrm{mg}, 6.77 \mu \mathrm{~mol}, \mathbf{7 3} \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.18, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $10.1(5 \mathrm{H}, \mathrm{NH})$ not visible, $9.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.93-7.90\left(\mathrm{~m}, 5 \mathrm{H}, H_{\text {triazole int }}\right)$, 7.72$7.68\left(\mathrm{~s}, 15 \mathrm{H}, H_{\text {triazole ext }}\right)$, $7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{b}^{\prime}}\right), 6.97-6.57\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}\right), 5.30\left(\mathrm{~d}_{\text {app }}, 15 \mathrm{H}, H_{\text {4gal }}\right), 5.15\left(\mathrm{t}_{\text {app }}, 15 \mathrm{H}\right.$, $H_{3 \text { glc }}$), 5.08-5.05 (m, 25H, $\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \mathrm{gal}}$), 4.93 (dd, $\left.{ }^{3} \mathrm{~J}_{2,3}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 15 \mathrm{H}, H_{3 g a 1}\right), 4.84$ ($\mathrm{t}_{\text {app }}, 15 \mathrm{H}, H_{2 \mathrm{glc}}$),
4.53-4.44 (m, 105H, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \mathrm{aglc}}, H_{1 \mathrm{gal}}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.11-4.03\left(\mathrm{~m}, 45 \mathrm{H}, H_{6 \mathrm{bglc}}\right.$, $H_{6 \mathrm{agal}}$, $H_{6 \mathrm{bgal}}$), 3.88-3.55 (m, 295H, $\mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{H}_{5 \mathrm{gal}}, H_{5 \mathrm{glc}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}, \mathrm{HNC}_{q} \mathrm{CH}_{2} \mathrm{O}$), 2.11-1.92 (m, 315H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 170.3,170.2,170.0,169.9,169.7,169.5,169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 167.1$ (CONH), $165.1(C O N H), 155.3\left(C_{\mathrm{a}}\right), 147.3\left(C_{\mathrm{d}^{\prime}}\right), 144.6\left(C_{\mathrm{d}}\right), 144.3\left(C_{\mathrm{d}}\right), 144.3,144.2\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 134.6$ $\left(C_{\mathrm{a}^{\prime}}\right), 125.4\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $125.1\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $123.7\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $120.9\left(C_{\mathrm{b}^{\prime}}\right), 120.8\left(C_{\mathrm{c}^{\prime}}\right), 115.9,115.1\left(C_{\mathrm{b}}\right)$, $100.9\left(C_{1 \text { gal }}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.1\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.5,70.4,70.3$, 70.1, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(\mathrm{C}_{2 \mathrm{gal}}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.5\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.5\left(\mathrm{C}_{4 \mathrm{gal}}\right)$, $64.5\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{q}\right), 61.9\left(C_{6 g l c}+\right.$ $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right)$, $60.7\left(\mathrm{C}_{6 \text { gal }}\right), 60.3\left(\mathrm{OCH}_{2}\right), 52.5\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right)$, $49.9\left(\mathrm{NCH}_{2}\right), 43.5\left(\mathrm{COCH}_{2} \mathrm{Cl}\right), 20.7,20.7,20.6,20.5$, 20.5, 20.4 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.8 (m, 3P).
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+} \mathrm{MS}\right)$ for $\mathrm{C}_{638} \mathrm{H}_{897} \mathrm{CIN}_{69} \mathrm{O}_{347} \mathrm{P}_{3}=15214.6\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}$, found 15214.3 (After deconvolution).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.57 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=5.1 \mathrm{~nm}$.

Figure S125. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S126. gCOSY spectrum of compound 29

Figure S127. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S128. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S129. $\mathrm{ESI}^{+}-\mathrm{MS}$ spectrum (deconvolution) of compound 29

AB_{15} glycodendron with a focal $\mathrm{N}_{3} \mathbf{3 0}$

To a stirring solution of $29(129 \mathrm{mg}, 8.48 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in dry DMF (2 mL) under a nitrogen atmosphere were added sodium azide ($5.0 \mathrm{mg}, 76 \mu \mathrm{~mol}, 9.0$ eq.) and sodium iodide ($1.0 \mathrm{mg}, 1.7 \mu \mathrm{~mol}, 0.2$ eq.). After stirring at $70^{\circ} \mathrm{C}$ for 5 hours under a nitrogen atmosphere, the mixture was stirred at room temperature for additional 15 hours. The solvent was removed under reduced pressure and EtOAc was added. Then the organic was washed successively with water $(4 \times 20 \mathrm{~mL})$ and brine $(3 \times 10 \mathrm{~mL})$. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH} 100: 0$ to $90: 10$) afforded the desired compound 30 (98.0 mg , $6.44 \mu \mathrm{~mol}, 76 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.18, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $10.1(5 \mathrm{H}, \mathrm{NH})$ not visible, 9.48 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.93-7.90 (m,5H, $H_{\text {triazole int }}$), 7.73$7.67\left(\mathrm{~s}, 15 \mathrm{H}, H_{\text {triazole ext }}\right.$), $7.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}{ }^{\prime}\right), 6.99-6.57\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}\right), 5.30\left(\mathrm{~d}_{\text {app }}, 15 \mathrm{H}, H_{\text {4gal }}\right), 5.16$ ($\mathrm{t}_{\text {app }}, 15 \mathrm{H}$, $H_{3 g 1 c}$), 5.09-5.04 (m, 25H, C $\mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}$), 4.92 (dd, $\left.{ }^{3} J_{2,3}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 15 \mathrm{H}, H_{3 g a l}\right), 4.84$ ($\mathrm{t}_{\text {app }}, 15 \mathrm{H}, H_{2 \mathrm{glc}}$),
4.53-4.44 (m, 105H, $\left.\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{\text {1glc }}, H_{6 \mathrm{aglc}}, H_{1 \mathrm{gal}}\right), 4.11-4.03\left(\mathrm{~m}, 47 \mathrm{H}, H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.84-3.52$ (m, 295H, NHCOCH $\mathrm{N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{5 \text { gal }}, H_{5 \mathrm{glc}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}, \mathrm{HNC}_{q} \mathrm{CH}_{2} \mathrm{O}$), 2.11-1.92 (m, 315H, COCH_{3}).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, 168.9 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 166.0 (CONH), $165.0(C O N H), 155.2\left(C_{\mathrm{a}}\right), 147.3\left(C_{\mathrm{d}^{\prime}}\right), 144.6\left(C_{\mathrm{d}}\right), 144.5\left(C_{\mathrm{d}}\right), 144.3,144.2\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.4\left(C_{\text {triazole }}=\mathrm{CH}\right)$, 134.6 $\left(C_{\mathrm{a}^{\prime}}\right)^{\prime}, 125.3\left(\mathrm{C}_{\text {triazole }}=C H\right), 125.1\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $123.7\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.7\left(C_{\mathrm{c}}\right)$, $120.8\left(C_{\mathrm{b}^{\prime}}\right), 120.8\left(C_{\mathrm{c}^{\prime}}\right), 115.8$, $115.1\left(C_{\mathrm{b}}\right)$, $100.9\left(C_{1 \text { gal }}\right), 100.4\left(C_{1 \mathrm{glc}}\right), 76.1\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.4\left(C_{5 \mathrm{glc}}\right), 71.4\left(C_{2 \mathrm{glc}}\right), 70.8\left(C_{3 \mathrm{gal}}\right), 70.4\left(C_{5 \mathrm{gal}}\right), 70.4,70.3,70.2$, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.4\left(\mathrm{C}_{4 \mathrm{gal}}\right)$, $64.4\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{q}\right), 61.9\left(C_{6 g l c}+\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right)$, $60.7\left(\mathrm{C}_{6 \mathrm{gal}}\right), 60.3\left(\mathrm{OCH}_{2}\right), 52.5\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 52.1\left(\mathrm{COCH}_{2} \mathrm{~N}_{3}\right), 49.9\left(\mathrm{NCH}_{2}\right), 20.7,20.7,20.6,20.5,20.5,20.4$ ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
${ }^{31}$ P NMR ($\left.122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.8$ (m, 3P).
$\boldsymbol{m} / \mathbf{z}$ (ESI ${ }^{+}$MS) for $\mathrm{C}_{638} \mathrm{H}_{897} \mathrm{ClN}_{69} \mathrm{O}_{347} \mathrm{P}_{3}=15221.1[M+\mathrm{H}]^{+}$, found 15220.6 (After deconvolution).
GPC measurements (THF): $M_{w}=16580 ; M_{\mathrm{n}}=15400, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.077$.

Figure S130. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S131. gCOSY spectrum of compound $\mathbf{3 0}$

Figure S132. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 0}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S133. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 0}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S134. ESI+-MS spectrum (deconvolution) of compound $\mathbf{3 0}$

Polydispersity(Mw/Mn) : 1.077 ± 0.160 (15\%)
Polydispersity(Mz/Mn) : 2.004 ± 0.576 (29\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)
Mn
Mw
$: 1.540 e+04$ (108)
Mz
$: 1.658 \mathrm{e}+04(10 \%)$
: 3.087e+04 (26\%)
Figure S135. GPC trace (in THF) for compound $\mathbf{3 0}$

AB_{25} glycodendron with a focal $\mathrm{N}_{3} 31$

To a solution of cyclotriphosphazene core $6\left(1.86 \mathrm{mg}, 1.76 \mu \mathrm{~mol}, 1.0 \mathrm{eq}\right.$.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added azido derivative 15 ($60 \mathrm{mg}, 11.4 \mu \mathrm{~mol}, 6.5$ eq.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($2.86 \mathrm{mg}, 11.4 \mu \mathrm{~mol}, 6.5 \mathrm{eq}$) and sodium ascorbate ($2.23 \mathrm{mg}, 11.4 \mu \mathrm{~mol}, 6.5 \mathrm{eq}$.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound 31 ($40.0 \mathrm{mg}, 1.46 \mu \mathrm{~mol}, 83 \%$) as a yellowish foam.
$\mathbf{R}_{\mathbf{f}}=0.32, \mathrm{DCM} / \mathrm{MeOH} 92: 8$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.15 (br s, $5 \mathrm{H}, \mathrm{NH}$), 9.45 (br s, $1 \mathrm{H}, \mathrm{NHCOCH} \mathrm{Cl}_{2}$), $8.03+7.98(2 \times \mathrm{s}, 5 \mathrm{H}$, $\left.H_{\text {int.triazole }}\right), 7.89-7.83\left(\mathrm{~m}, 25 \mathrm{H}, H_{\text {ext.triazole }}\right), 7.35-7.30\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{b}\right), 6.97-6.54\left(\mathrm{~m}, 132 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}\right), 5.40(\mathrm{br} \mathrm{s}$,
$10 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}$), $5.32\left(\mathrm{~d}_{\text {app }}, 25 \mathrm{H}, H_{4 g \mathrm{al}}\right), 5.17-5.04\left(\mathrm{~m}, 110 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \mathrm{gal}}\right), 4.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,4}\right.$ $\left.=7.1 \mathrm{~Hz}, 25 \mathrm{H}, H_{3 \text { gal }}\right), 4.87-4.82\left(\mathrm{~m}, 25 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.54-4.42\left(\mathrm{~m}, 125 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \mathrm{aglc}}, H_{\text {ggal }}\right), 4.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{NHCOCH}_{2} \mathrm{Cl}\right), 4.11-4.02\left(\mathrm{~m}, 75 \mathrm{H}, H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}\right), 3.92-3.44\left(\mathrm{~m}, 425 \mathrm{H}, H_{5 g a l}, H_{5 g l \mathrm{c}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}\right)$, 2.11-1.92 (m, $\left.525 \mathrm{H}, \mathrm{COCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.2, 170.0, 169.9, 169.7, 169.5, 169.0 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$), 164.4 ($\mathrm{C}=\mathrm{O}$), $163.9(C=O)$, $155.2\left(C_{\mathrm{a}}\right), 146.6\left(C_{\mathrm{d}^{\prime}}\right), 144.5\left(C_{\mathrm{d}}\right), 144.2\left(C_{\mathrm{d}}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 134.8\left(C_{\mathrm{a}^{\prime}}\right), 125.3$ $\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $124.6\left(\mathrm{C}_{\text {triazole }}=C H\right), 124.1\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.9\left(C_{\mathrm{c}^{\prime}}\right)$, $121.8\left(C_{\mathrm{b}^{\prime}}\right), 120.9\left(C_{\mathrm{c}}\right), 120.8\left(C_{\mathrm{c}}\right), 116.0\left(C_{\mathrm{b}}\right), 115.3$ $\left(C_{\mathrm{b}}\right), 115.1\left(C_{\mathrm{b}}\right), 101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 g a 1}\right)$, $70.5,70.4,70.4,70.3,70.2,70.1,70.1,69.3,69.1,69.0\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 g a l}\right), 62.1$ $\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right)$, $61.9\left(C_{6 \mathrm{glc}}\right), 61.6\left(\mathrm{OCH}_{2}\right), 60.7\left(C_{6 \mathrm{gal}}\right), 52.7\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.3\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 43.5$ $\left(\mathrm{NHCOCH}_{2} \mathrm{Cl}\right), 20.8,20.7,20.6,20.5,20.5,20.4\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.2-9.7 (m, 18P).
$\boldsymbol{m} / \boldsymbol{z}$ MALDI-TOF (DHB matrix) for $\mathrm{C}_{1168} \mathrm{H}_{1527} \mathrm{CIN}_{114} \mathrm{O}_{597} \mathrm{P}_{18}=27309.0$; found 27241.4.
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.19 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=6.8 \mathrm{~nm}$.
GPC measurements $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=26040 ; M_{\mathrm{n}}=25230, \mathrm{PDI}\left(M_{w} / M_{\mathrm{n}}\right)=1.032$.

Figure S136. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 1}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S137. gCOSY spectrum of compound 31

Figure S138. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $31\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S139. HETCOR spectrum of compound 31

1	,	,	,	I	,	I	,	1	-	1	1	1	1	1	1	1	1	1	
90	80	70	60	50	40	30	20	10		-10	-20	-30	-40	-50	-60	-70	-80	-90	-101

Figure S140. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $31\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S141. MALDI-TOF spectrum (DHB matrix) of compound $\mathbf{3 1}$

Polydispersity(Mw/Mn) : 1.032 ± 0.146 (14\%)
Polydispersity(Mz/Mn) : 1.176 ± 0.431 (37\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Mn	$:$	$2.523 \mathrm{e}+04$	(9%)
Mw	$:$	$2.604 \mathrm{e}+04$	(10%)
Mz	$:$	$2.967 \mathrm{e}+04$	(35%)

Figure S142. GPC trace $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right)$ for compound 31

Hypercore with $\mathbf{2 0}$ peripheral propargylic functions 34

To a solution of tetrathioacetylated pentaerythritol core $32(3.42 \mathrm{mg}, 9.28 \mu \mathrm{~mol}, 1.0$ eq.) and chloroacetamide dendron $6(51.0 \mathrm{mg}, 48.3 \mu \mathrm{~mol}, 5.2 \mathrm{eq}$.$) in dry \mathrm{EtOH}(1.5 \mathrm{~mL})$ were added at room temperature finely ground $\mathrm{NaOH}(2.97 \mathrm{mg}$, $74.3 \mu \mathrm{~mol}, 8.0$ eq.) and $\mathrm{NaBH}_{4}(3.00 \mathrm{mg}, 74.4 \mu \mathrm{~mol}, 8.0$ eq.) under a nitrogen atmosphere. The white solution was warmed up to $35^{\circ} \mathrm{C}$ for 3 h .. Insoluble brown oil qui ckly formed corresponding to the desired compound. The solvent was then removed via syringe and the residual oil was rinsed once with cold EtOH while stirring ($2 \times 2.5 \mathrm{~mL}$). Finally, the oil was solubilized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 0\right.$ to $\left.99: 1\right)$ to afford desired icosapropargylated core $\mathbf{3 4}(31.0 \mathrm{mg}, 7.71 \mu \mathrm{~mol}, \mathbf{8 3 \%}$) as an off-white foam.
$\mathbf{R}_{\mathbf{f}}=0.29, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 8.53 (br s, $4 \mathrm{H}, \mathrm{NH}$), $7.39\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{b}\right), 6.88-6.76\left(\mathrm{~m}, 88 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}\right.$, CH_{c}), 4.63 (m, 40H, OCH $\mathrm{O}_{2} \mathrm{C}=\mathrm{CH}$), 3.39 (br s, $8 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CONH}$), 2.84 (br s, $\left.8 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right), 2.54$ (m, 20H, C三CH).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $166.4(C=\mathrm{O})$, $154.5\left(C_{\mathrm{a}}\right), 147.1\left(C_{\mathrm{d}^{\prime}}\right), 144.7\left(C_{\mathrm{d}}(\times 2)\right), 134.3\left(C_{\mathrm{a}}\right), 121.8\left(C_{\mathrm{c}}(\times 2)\right)$, $121.4\left(C_{b^{\prime}}\right), 121.0\left(C_{c^{\prime}}\right), 115.4\left(C_{b}(\times 2)\right), 78.6(C \equiv C H), 78.4(C \equiv \mathrm{CH}), 76.0(\mathrm{C}=C H), 75.8(\mathrm{C} \equiv \mathrm{CH}(\times 2))$, $56.2\left(\mathrm{OCH}_{2}(\times 3)\right)$, $44.0\left(C_{q}\right), 38.5\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 37.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $9.71\left(\mathrm{t}_{\text {tapp }}, 12 \mathrm{P}\right)$.
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+}-M S\right)$ for $\mathrm{C}_{217} \mathrm{H}_{176} \mathrm{~N}_{16} \mathrm{O}_{48} \mathrm{P}_{12} \mathrm{~S}_{4}=2137.3851[\mathrm{M}+2 \mathrm{H}]^{2+}$; found 2137.3857; 1425.2592 $[\mathrm{M}+3 \mathrm{H}]^{3+}$; found 1425.2595.

GPC measurements $\left(\mathrm{CHCl}_{3}\right): M_{w}=4625 ; M_{\mathrm{n}}=4540$, PDI $\left(M_{w} / M_{n}\right)=1.019$.

Figure S143. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S144. gCOSY spectrum of compound 34

Figure S145. HETCOR spectrum of compound 34

Figure S146. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S147. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $34\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure $\mathbf{S 1 4 8}$. ESI^{+}-HRMS spectrum of compound $\mathbf{3 4}$

Polydispersity(Mw/Mn) : 1.019 ± 0.158 (15\%)
Polydispersity(Mz/Mn): 1.052 ± 0.305 (29\%)

Molar Mass Moments $(\mathbf{g} / \mathrm{mol})$			
$\mathbf{M n}$	$:$	$4.540 \mathrm{e}+03$	(10%)
Mw	$:$	$4.625 \mathrm{e}+03$	(118)
$\mathbf{M z}$	$:$	$4.776 \mathrm{e}+03$	(268)

Figure S149. GPC trace (in CHCl_{3}) of compound 34

Hypercore with 30 peripheral propargylic functions 35

To a solution of hexakis(thioacetyl)benzene core $33^{4}(3.67 \mathrm{mg}, 6.02 \mu \mathrm{~mol}, 1.0$ eq.) and chloroacetamide dendron 6 $(50.0 \mathrm{mg}, 47.4 \mu \mathrm{~mol}, 7.9$ eq.) in dry $\mathrm{EtOH}(2.0 \mathrm{~mL})$ were added at room temperature finely ground $\mathrm{NaOH}(3.50 \mathrm{mg}$, $87.5 \mu \mathrm{~mol}, 14.5 \mathrm{eq}$.) and NaBH_{4} ($3.50 \mathrm{mg}, 92.5 \mu \mathrm{~mol}, 15.3$ eq.) under a nitrogen atmosphere. The white solution was warmed up to $35^{\circ} \mathrm{C}$ for 3 h . and an insoluble oil qui ckly formed. The solvent was removed via syringe and the residual oil was rinced with EtOAc while stirring ($3 \times 10 \mathrm{~mL}$). Finally, the oil was solubilized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 0\right.$ to 99.5:0.5) to afford desired tricontapropargylated core 35 (29 mg, 4.48 $\mu \mathrm{mol}, 74 \%)$ as an off-white foam. Degradation occurs after 3 days at $-20^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2$
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 8.58(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{NH}), 7.42\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{b}\right.$), 6.90-6.73 (m, 132H, CH $\mathrm{C}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{c}}$, $\mathrm{CH}_{c^{\prime}}$), $4.60\left(\mathrm{~m}, 60 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.12\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right), 3.28$ (br s, 12H, SCH CONH_{2}), $2.53(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $167.7(\mathrm{C}=\mathrm{O})$, $154.6\left(C_{\mathrm{a}}\right), 147.2\left(C_{\mathrm{d}^{\prime}}\right), 144.7\left(C_{\mathrm{d}}\right), 136.2\left(\mathrm{C}_{\mathrm{q} \text { core }}\right), 134.6\left(C_{\mathrm{a}^{\prime}}\right), 121.7$ $\left(C_{\mathrm{c}}\right), 121.5\left(C_{\mathrm{b}^{\prime}}\right), 121.2\left(C_{\mathrm{c}^{\prime}}\right), 115.4\left(C_{\mathrm{b}}\right), 78.7(\mathrm{C} \equiv \mathrm{CH}), 78.6(\mathrm{C} \equiv \mathrm{CH}), 75.9(\mathrm{C} \equiv \mathrm{CH}), 75.9(\mathrm{C} \equiv C \mathrm{H}), 56.3\left(\mathrm{OCH}_{2}\right), 56.2$ $\left(\mathrm{OCH}_{2}\right), 37.8\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 31.2\left(\mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.69 ($\mathrm{s}_{\text {app }}, 18 \mathrm{P}$).
$\boldsymbol{m} / \mathbf{z}$ (MALDI-TOF/DHB matrix) for $\mathrm{C}_{330} \mathrm{H}_{264} \mathrm{~N}_{24} \mathrm{O}_{72} \mathrm{P}_{18} \mathrm{~S}_{6}=6467.6$; found 6468.9.
GPC measurements (THF): $M_{\mathrm{w}}=7152 ; M_{\mathrm{n}}=6399, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.12$.

Figure S150. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure $\mathbf{S 1 5 1 .}{ }^{13} \mathrm{C}$ NMR spectrum of compound $35\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S152. HETCOR spectrum of compound 35

Figure S153. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 5}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S154. MALDI-TOF (DHB matrix) spectrum of compound 35 (insert: MALDI-TOF of 35, 3 days after synthesis)

Polydispersity(Mw/Mn) : 1.118 ± 0.150 (13\%)
Polydispersity(Mz/Mn): 1.248 ± 0.326 (26\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Molar Mass Moments	$(\mathrm{g} / \mathrm{mol})$		
Mn	$:$	$6.399 \mathrm{e}+03$	(9%)
Mw	\vdots	$7.152 \mathrm{e}+03$	(9%)
$\mathbf{M z}$	$:$	$7.985 \mathrm{e}+03$	(24%)

Figure S155. GPC trace (in THF) for compound 35

Icosavalent glycodendrimer 36

To a solution of icosapropargylated core $34(11.0 \mathrm{mg}, 2.58 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) in a 1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(4.0 \mathrm{~mL})$ were added azido derivative 10 ($72.0 \mathrm{mg}, 0.086 \mathrm{mmol}, 33.3 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(17.4 \mathrm{mg}, 0.069 \mathrm{mmol}, 27.0 \mathrm{eq}$.) and sodium ascorbate ($13.7 \mathrm{mg}, 0.069 \mathrm{mmol}, 27.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Noteworthy is the fact that 5 mg of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and 4 mg of sodium ascorbate were added to the solution after the 3 hours of heating. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound 36 ($43.0 \mathrm{mg}, 2.00 \mu \mathrm{~mol}, 74 \%$) as a yellowish foam.
$\mathbf{R}_{\mathbf{f}}=0.40, \mathrm{DCM} / \mathrm{MeOH} 92: 8$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.70(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH}), 7.85-7.84\left(2 \times \mathrm{s}, 20 \mathrm{H}, H_{\text {triazole }}\right), 7.44-7.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{b}\right), 6.90-$ $6.56\left(\mathrm{~m}, 88 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c}\right), 5.32\left(\mathrm{~d}_{\text {app }}, 20 \mathrm{H}, H_{4 g a 1}\right), 5.18-5.06\left(\mathrm{~m}, 80 \mathrm{H}, H_{3 g 1 \mathrm{c}}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}\right), 4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3,4}=7.1 \mathrm{~Hz}, 20 \mathrm{H}, H_{\text {3gal }}\right), 4.88-4.83\left(\mathrm{~m}, 20 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.54-4.42\left(\mathrm{~m}, 100 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{\text {gic }}, H_{6 \text { aglc }}, H_{\text {1gal }}\right), 4.13-4.05(\mathrm{~m}, 60 \mathrm{H}$,
$\left.H_{6 \mathrm{bglc}}, H_{6 \mathrm{agal}}, H_{6 \mathrm{bgal}}\right), 3.88-3.45\left(\mathrm{~m}, 348 \mathrm{H}, H_{5 g a l}, H_{5 g l c}, H_{4 g l \mathrm{c}}, \mathrm{OCH}_{2}, \mathrm{SCH} \mathrm{CONH}_{2}\right.$), 2.81 (br s, $\left.8 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right)$, 2.11-1.92 (m, $420 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.2, 170.1, 170.0, 169.7, 169.5, 169.0 (7×s, COCH_{3}), 167.7 (NHC=O), $155.2\left(C_{\mathrm{a}}\right), 146.5\left(C_{\mathrm{d}^{\prime}}\right), 144.4\left(C_{\mathrm{d}}\right), 144.3\left(C_{\mathrm{d}}\right), 143.4\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 135.4\left(C_{\mathrm{a}^{\prime}}\right), 124.5\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $124.1\left(\mathrm{C}_{\text {triazole }}=C H\right), 121.8\left(C_{\mathrm{c}}\right), 121.7\left(C_{\mathrm{c}}\right), 121.0\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{b}^{\prime}}\right), 115.2\left(C_{\mathrm{b}}\right), 101.0\left(C_{1 \text { gal }}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right)$, 72.7 ($C_{3 \mathrm{glc}}$), 72.5 ($C_{5 \mathrm{glc}}$), 71.5 ($C_{2 \mathrm{glc}}$), 70.9 ($C_{3 \mathrm{gal}}$), 70.5 ($C_{5 \mathrm{gal}}$), 70.5, 70.4, 70.4, 70.3, 70.2, 70.1, 70.1, 69.3, 69.1, 69.0 $\left(\mathrm{OCH}_{2}\right), 68.9\left(\mathrm{C}_{2 \mathrm{gal}}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(\mathrm{C}_{4 \mathrm{gal}}\right), 62.2\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{gIc}}\right), 61.8\left(\mathrm{OCH}_{2}\right), 60.8\left(C_{6 \mathrm{gal}}\right), 50.2\left(\mathrm{NCH}_{2}\right)$, $50.1\left(\mathrm{NCH}_{2}\right), 44.0\left(\mathrm{C}_{\mathrm{q}}\right.$, not visible), $38.4\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 37.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right), 29.6,20.8,20.7,20.6,20.5,20.5,20.4(7 \times \mathrm{s}$, COCH_{3}).
${ }^{31}$ P NMR ($\left.122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.8$ ($\mathrm{t}_{\text {app }}, 12 \mathrm{P}$).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-TOF-MS/DHB matrix) for $\mathrm{C}_{897} \mathrm{H}_{1196} \mathrm{~N}_{76} \mathrm{O}_{468} \mathrm{P}_{12} \mathrm{~S}_{4}=21031.3$; found 21098.1 (with successive losses of monomers and dendrons).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.17 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=7.0 \mathrm{~nm}$.
GPC measurements $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=25870 ; M_{\mathrm{n}}=24610, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.051$.

Figure S156. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 6}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S157. gCOSY spectrum of compound 36

Figure S158. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $36\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S159. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $35\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S160. MALDI-TOF spectrum of compound 36 with successive fragmentations.

Polydispersity(Mw/Mn) : 1.051 ± 0.159 (15\%)
Polydispersity(Mz/Mn): 1.176 ± 0.383 (33\%)
Molar Mass Moments ($\mathrm{g} / \mathrm{mol}$)

Mn	$:$	$2.461 \mathrm{e}+04$	(108)
Mw	\vdots	$2.587 \mathrm{e}+04$	(118)
Mz	$:$	$2.895 \mathrm{e}+04$	(308)

Figure S161. GPC trace $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right)$ for compound $\mathbf{3 6}$

Defectuous glycodendrimer 36a (location of propargylic functions is arbitrary)

To a solution of icosapropargylated core 34 ($10.2 \mathrm{mg}, 2.39 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(4.0 \mathrm{~mL})$ were added azido derivative 10 ($32.0 \mathrm{mg}, 0.038 \mathrm{mmol}, 16.0 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(12.0 \mathrm{mg}, 0.048 \mathrm{mmol}, 20.0 \mathrm{eq}$.) and sodium ascorbate ($9.5 \mathrm{mg}, 0.048 \mathrm{mmol}, 20.0 \mathrm{eq}$.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired mixture of defectuous multivalent compounds containing $4-5$ propargylic functions on average $\mathbf{3 6 a}$ ($36.0 \mathrm{mg}, 2.04 \mu \mathrm{~mol}, 85 \%$) as an off-white foam.
$\mathbf{R}_{\mathrm{f}}=0.40, \mathrm{DCM} / \mathrm{MeOH} 92: 8$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $9.70(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH}), 7.85-7.84\left(2 \times \mathrm{s}, 16 \mathrm{H}, H_{\text {triazole }}\right), 7.44-7.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{b}\right), 6.90-$ $6.56\left(\mathrm{~m}, 88 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c}\right), 5.32\left(\mathrm{~d}_{\text {app }}, 16 \mathrm{H}, H_{4 g \mathrm{al}}\right), 5.18-5.06\left(\mathrm{~m}, 64 \mathrm{H}, H_{39 \mathrm{cl}}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}\right), 4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3,4}=7.1 \mathrm{~Hz}, 16 \mathrm{H}, H_{3 \text { gal }}\right), 4.88-4.83\left(\mathrm{~m}, 16 \mathrm{H}, H_{2 g \mathrm{c}}\right), 4.65\left(\mathrm{~m}, \sim 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}=\mathrm{CH}\right), 4.54-4.42\left(\mathrm{~m}, 80 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{\text {glc }}, H_{6 \text { aglc }}\right.$, $H_{\text {igal }}$, 4.13-4.05 (m, 48H, $\left.H_{\text {6bglc }}, H_{6 a g a l}, H_{\text {6bgal }}\right), 3.88-3.45\left(\mathrm{~m}, 280 \mathrm{H}, H_{5 g a l}, H_{5 g l \mathrm{c}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}, \mathrm{SCH}_{2} \mathrm{CONH}\right.$), 2.81 (br s, $8 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}$), 2.53 (br s, $\sim \mathbf{4 H}, \mathbf{C H}_{2} \mathbf{O C}=\mathbf{C H}$), 2.11-1.92 ($\mathrm{m}, 336 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 170.3,170.2,170.1,170.0,169.7,169.5,169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 167.7$ (NHC=O), $155.3\left(C_{\mathrm{a}}\right), 154.4\left(C_{\mathrm{a}}\right), 146.5\left(C_{\mathrm{d}^{\prime}}\right), 144.5\left(C_{\mathrm{d}}\right), 144.3\left(C_{\mathrm{d}}\right), 143.4\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 135.4\left(C_{\mathrm{a}^{\prime}}\right), 124.5$ $\left(\mathrm{C}_{\text {triazole }}=C \mathrm{H}\right)$, $124.5\left(\mathrm{C}_{\text {triazole }}=C H\right), 124.1\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $121.7\left(C_{\mathrm{c}}\right)$, $121.0\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{b}^{\prime}}\right), 115.5\left(C_{\mathrm{b}}\right), 115.2$ $\left(C_{\mathrm{b}}\right), 101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 78.7(C \equiv \mathrm{CH}), 78.5(C \equiv \mathrm{CH}), 76.2\left(C_{4 \mathrm{glc}}\right), 76.0(\mathrm{C} \equiv \mathrm{CH}), 75.8(\mathrm{C} \equiv C \mathrm{H}), 72.8\left(C_{3 \mathrm{glc}}\right), 72.5$ $\left(C_{5 \mathrm{glc}}\right), 71.6\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.5,70.4,70.4,70.3,70.2,70.1,70.1,69.3,69.1,69.0\left(\mathrm{OCH}_{2}\right), 68.9$ $\left(C_{2 g a l}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 g a l}\right), 62.2\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{glc}}\right), 61.8\left(\mathrm{OCH}_{2}\right), 60.7\left(C_{6 \mathrm{gal}}\right), 56.1\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 50.1$ $\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 44.2\left(\mathrm{C}_{\mathrm{q}}\right), 38.4\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 37.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right), 29.6,20.8,20.7,20.6,20.5,20.5,20.4(7 \times \mathrm{s}$, COCH_{3}).
${ }^{31}$ P NMR ($\left.122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.8\left(\mathrm{t}_{\text {app }}, 12 \mathrm{P}\right)$.
$\boldsymbol{m} / \mathbf{z}$ (MALDI-TOF-MS/DHB matrix) : From 21005.2 (click completion) to 7574 with signals corresponding to successive losses of monomers (~876 MW).

Figure S162. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 6 a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S163. gCOSY spectrum of compound 36a

Figure S164. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 6 a}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

Figure S165. HSQC spectrum of compound 36a

Figure S166. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 6 a}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S167. MALDI-TOF (DHB matrix) spectrum of compound 36a with successive losses of monomers.

Protected tricontavalent glycodendrimer 37

To a solution of tricontapropargylated core $\mathbf{3 5}(11.0 \mathrm{mg}, 1.70 \mu \mathrm{~mol}, 1.0$ eq. $)$ in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(4.0 \mathrm{~mL})$ were added azido derivative $\mathbf{1 0}\left(71.2 \mathrm{mg}, 0.085 \mathrm{mmol}, 50.0\right.$ eq.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(17.0 \mathrm{mg}, 0.068 \mathrm{mmol}, 40.0 \mathrm{eq}$.) and sodium ascorbate ($13.5 \mathrm{mg}, 0.068 \mathrm{mmol}, 40.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Noteworthy is the fact that 6 mg of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and 4 mg of sodium ascorbate were added to the solution after the 3 hours of heating. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.85: 15\right)$ afforded desired multivalent compound $37(40.0 \mathrm{mg}, 1.27 \mu \mathrm{~mol}, 74 \%)$ as a yellowish foam.
$\mathbf{R}_{\mathrm{f}}=0.27, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 9.82 (br s, $6 \mathrm{H}, \mathrm{NH}$), $7.85-7.84$ (br s, $30 \mathrm{H}, H_{\text {triazole }}$), $7.46-7.40\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{b}\right), 6.95-$ $6.50\left(\mathrm{~m}, 132 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c}\right), 5.33\left(\mathrm{~d}_{\text {app }}, 30 \mathrm{H}, \mathrm{H}_{4 \text { gal }}\right), 5.19-5.07\left(\mathrm{~m}, 120 \mathrm{H}, H_{3 g \mathrm{cl}}, \mathrm{C}_{q} \mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}\right), 4.94\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.3\right.$
$\left.\mathrm{Hz},{ }^{3} J_{3,4}=7.1 \mathrm{~Hz}, 30 \mathrm{H}, H_{3 \text { gal }}\right), 4.88-4.83\left(\mathrm{~m}, 30 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.55-4.46\left(\mathrm{~m}, 150 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, H_{\text {1glc }}, H_{6 \text { aglc }}, H_{\text {1gal }}\right), 4.20(\mathrm{br} \mathrm{s}, 12 \mathrm{H}$, $\left.\mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right)$, 4.13-4.05 (m, $\left.90 \mathrm{H}, H_{6 \text { bglc }}, H_{6 a g a l}, H_{6 \mathrm{bgal}}\right), 3.89-3.40\left(\mathrm{~m}, 522 \mathrm{H}, H_{5 \text { gal }}, H_{5 \mathrm{glc}}, H_{4 \mathrm{glc}}, \mathrm{OCH}_{2}, \mathrm{SCH} \mathrm{SONH}_{2} \mathrm{CONH}\right.$, 2.11$1.92\left(\mathrm{~m}, 630 \mathrm{H}, \mathrm{COCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.2, 170.1, 170.0, 169.7, 169.5, $169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 169.3$ (NHC=O), $155.2\left(C_{\mathrm{a}}\right), 154.5\left(C_{\mathrm{a}}\right), 146.5\left(C_{\mathrm{d}^{\prime}}\right)$ (not visible), $144.4\left(C_{\mathrm{d}}\right), 144.3\left(C_{\mathrm{d}}\right), 143.4\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3\left(C_{\text {triazole }}=\mathrm{CH}\right), 136.2$ $\left(\mathrm{C}_{\mathrm{q} \text { core }}\right)$, $135.4\left(C_{\mathrm{a}^{\prime}}\right), 124.5\left(\mathrm{C}_{\text {triazole }}=C H\right), 124.1\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right), 121.7\left(C_{\mathrm{c}}\right), 121.0\left(C_{\mathrm{c}^{\prime}}\right), 120.9\left(C_{\mathrm{b}^{\prime}}\right), 115.2\left(C_{\mathrm{b}}\right)$, $101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.7\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.5,70.4,70.4$, $70.3,70.2,70.1,70.1,69.3,69.1,69.0\left(\mathrm{OCH}_{2}\right), 68.9\left(C_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.9\left(C_{6 \mathrm{glc}}\right)$, $61.8\left(\mathrm{OCH}_{2}\right), 60.7\left(\mathrm{C}_{6 \mathrm{gal}}\right), 50.2\left(\mathrm{NCH}_{2}\right), 50.1\left(\mathrm{NCH}_{2}\right), 37.8\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 31.2\left(\mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right)$ (not visible), 29.6, 20.8, 20.7, 20.6, 20.5, 20.5, 20.4 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 9.8 (m, 18P).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-TOF-MS/DHB matrix) for $\mathrm{C}_{1350} \mathrm{H}_{1794} \mathrm{~N}_{114} \mathrm{O}_{702} \mathrm{P}_{18} \mathrm{~S}_{6}=31600$; found 31478 (with signals corresponding to successive losses of monomer(s).
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.34 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=6.2 \mathrm{~nm}$.
GPC measurements $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{w}=42710 ; \mathrm{M}_{\mathrm{n}}=39580, \mathrm{PDI}\left(M_{w} / M_{\mathrm{n}}\right)=1.079$.

Figure S168. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 7}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S169. gCOSY spectrum of compound 37

Figure S170. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $37\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ (insert: zoom on aromatic section)

140 120 100

Figure S171. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 7}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Polydispersity(Mw/Mn) : 1.079 ± 0.170 (16\%)
Polydispersity(Mz/Mn): 1.193 ± 0.320 (27\%)
Molar Mass Moments ($\mathbf{g} / \mathrm{mol}$)

Mn	$: 3.958 e+04$	(11%)	
Mw	$: 4.271 e+04$	(10%)	
Mz	$:$	$4.720 e+04$	(24%)

Figure S172. GPC trace $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right.$) for compound 37

Figure S173. MALDI-TOF (DHB matrix) spectrum of compound 37 with successive losses of monomers

Hydroxylated tricontavalent glycodendrimer 38

Acetylated compound 37 ($34.0 \mathrm{mg}, 1.08 \mu \mathrm{~mol}$) was dissolved in a dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1)$ and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional 100 $\mu \mathrm{L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of MeOH/DCM ($4 \mathrm{~mL}, 3: 1$) is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected tricontavalent derivative $\mathbf{3 8}$ as an off-white solid ($20.0 \mathrm{mg}, 0.88 \mu \mathrm{~mol}, \mathbf{8 3} \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): $7.99\left(\mathrm{~m}, 30 \mathrm{H}, H_{\text {triazole }}\right), 7.28\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{b}\right), 6.99\left(\mathrm{br} \mathrm{s}, 132 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}\right), 5.10-$ 4.90 (br s, $60 \mathrm{H}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}$), 4.58-4.32 ($\mathrm{m}, 132 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}, H_{\text {1glc }}, H_{\text {1gal }}$), 3.97-3.25 (m, 792H,
$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{LacOCH} H \mathrm{CH}_{2}, H_{3 g l}, H_{2 \text { gal }}, H_{3 g a l}, H_{6 \text { bglc }}, H_{4 g a l}, H_{6 a g a l}, H_{6 \text { bgal }}, H_{6 a g l c}, H_{5 g a l}, H_{5 g l c}, H_{4 g l c}$, LacOCH $H C H_{2}, \mathrm{OCH}_{2}$, $\mathrm{H}_{2 \mathrm{glc}}, \mathrm{SCH}_{2} \mathrm{CONH}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): ~ \sim 165.0(\mathrm{C=O})$ (not visible), $155.6\left(C_{\mathrm{a}}\right), 145.0\left(C_{\mathrm{d}^{\prime}}\right)$ (not visible), $144.6\left(C_{\mathrm{d}}\right), 143.7$ $\left(C_{\text {triazole }}=\mathrm{CH}\right), 136.2\left(\mathrm{C}_{\mathrm{q} \text { core }}\right)$ (not visible), $130.7\left(C_{\mathrm{a}^{\prime}}\right)($ not visible $), 126.0\left(\mathrm{C}_{\text {triazole }}=C \mathrm{H}\right), 122.4\left(C_{\mathrm{c}}+C_{\mathrm{b}^{\prime}}+C_{\mathrm{c}^{\prime}}\right), 116.2\left(C_{\mathrm{b}}\right)$, $103.7\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{1 \mathrm{glc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5\left(C_{2 \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3$, 70.2, $\left(\mathrm{OCH}_{2}\right), 69.4\left(\mathrm{C}_{4 \mathrm{gal}}\right)$, $69.2\left(\mathrm{OCH}_{2}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 61.7\left(C_{6 \mathrm{glc}}\right), 60.8\left(C_{6 g a l}\right), 50.7\left(\mathrm{NCH}_{2}\right), 37.8(\mathrm{SCH} 2 \mathrm{CONH})$ (not visible), $31.2\left(\mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right)$ (not visible).
${ }^{31}$ P NMR (122 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 10.1$ (br s, 18P).
$\boldsymbol{m} / \mathbf{z}$ (MALDI-TOF/ DHB matrix) for $\mathrm{C}_{930} \mathrm{H}_{1374} \mathrm{~N}_{114} \mathrm{O}_{492} \mathrm{P}_{18} \mathrm{~S}_{6}=22773.2$, found 22862.0.
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.65 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=6.2 \mathrm{~nm}$.

Figure S174. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $38\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S175. gCOSY spectrum of compound 38

Figure S176. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $38\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference)

Figure S177. ${ }^{31}$ P NMR spectrum of compound $38\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

Figure S178. MALDI-TOF (DHB matrix) spectrum of compound 38 with successive losses of monomers

Hexacontavalent glycodendrimer 39

To a solution of icosapropargylated cyclotriphosphazene derivative $34(2.35 \mathrm{mg}, 0.55 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in a $1: 1 \mathrm{mixture}$ of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(3 \mathrm{~mL})$, were added azido derivative $14\left(51.8 \mathrm{mg}, 18.3 \mu \mathrm{~mol}, 33.3 \mathrm{eq}\right.$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{mg}, 18.6 \mu \mathrm{~mol}$, 34.0 eq.) and sodium ascorbate ($3.7 \mathrm{mg}, 18.6 \mu \mathrm{~mol}, 34.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Noteworthy is the fact that 2.5 mg of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and 2 mg of sodium ascorbate were added to the solution after the 3 hours of heating. Ethyl acetate (30 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (20 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}\right.$ 100:0 to 90:10) afforded desired multivalent compound $39(26.0 \mathrm{mg}, 0.43 \mu \mathrm{~mol}, 74 \%)$ as a yellowish oil.
$\mathbf{R}_{\mathbf{f}}=0.15$, DCM/MeOH 94:6.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.93\left(\mathrm{~s}, 20 \mathrm{H}, H_{\text {int-triazole }}\right), 7.73\left(\mathrm{~s}, 60 \mathrm{H}, H_{\text {ext-triazole }}\right), 7.28\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{b^{\prime}}+\mathrm{NH}_{\text {int }}\right)$, 6.99-6.60 (br s, $108 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}+\mathrm{NH}_{\text {ext }}$), 5.33 (br s, $60 \mathrm{H}, \mathrm{H}_{4 \mathrm{gal}}$), $5.19\left(\mathrm{t}_{\text {app }}, 60 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}\right), 5.10-5.02\left(\mathrm{~m}, 100 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\right.$ triazole $\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2 \text { gal }}$), $4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 60 \mathrm{H}, \mathrm{H}_{3 \text { gal }}\right.$), $4.83\left(\mathrm{t}_{\text {app }}, 60 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}\right), 4.54-4.47\left(\mathrm{~m}, 420 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\right.$ triazole $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{1 \text { glc }}, H_{6 a g l c}, H_{1 \text { gal }}\right), 4.10-4.02\left(\mathrm{~m}, 180 \mathrm{H}, H_{6 \text { bglc }}, H_{6 \text { agal }}, H_{6 \text { bgal }}\right), 3.86-3.53\left(\mathrm{~m}, 1188 \mathrm{H}, \mathrm{C}_{q}-\right.$ triazole $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}, \mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{5 g a l}, H_{5 g l c}, H_{4 g 1 c}, \mathrm{OCH}_{2}, \mathrm{HNCOCH}_{2} \mathrm{~S}$), 2.82 (br s, $8 \mathrm{H}, \mathrm{C}_{q} \mathrm{CH}_{2} \mathrm{~S}$), 2.11-1.92 (m, 1260H, COCH_{3}).
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}, \delta \mathrm{ppm}(\mathbf{1 4 5 0 0 0}$ scans $)$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, $168.9\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$, $166.3\left(\mathrm{CONH}_{\text {int }}\right)$, $165.2\left(\mathrm{CONH}_{\text {ext }}\right)$, $155.3\left(C_{\mathrm{a}}\right), 154.0\left(C_{\mathrm{a}}\right), 149.9\left(C_{\mathrm{d}^{\prime}}\right), 144.3\left(C_{\mathrm{d}}\right), 144.2\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.3$ $\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $135.2\left(C_{\mathrm{a}^{\prime}}\right)$, $125.4\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $123.9\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $121.4\left(C_{\mathrm{b}^{\prime}}\right)$, $116.1\left(C_{\mathrm{b}}\right)$, $115.2\left(C_{\mathrm{b}}\right)$, 101.0 $\left(C_{1 g a l}\right), 100.4\left(C_{19 \mathrm{cc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.8\left(C_{3 \mathrm{glc}}\right), 72.6\left(C_{5 \mathrm{glc}}\right), 71.6\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.4,70.3,70.2,70.2$, 70.0, $69.3\left(\mathrm{OCH}_{2}\right)$, $69.0\left(C_{2 \text { gal }}\right)$, $68.9\left(\mathrm{OCH}_{2}\right)$, $68.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.6\left(\mathrm{C}_{4 \mathrm{gal}}\right), 64.5\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{6 g \mathrm{clc}}\right), 61.9\left(C_{q}\right), 60.6$ $\left(C_{6 g a 1}\right), 60.3\left(\mathrm{NCH}_{2}\right), 52.5\left(\mathrm{HNCOCH}_{2} \mathrm{~N}_{\text {triazole }}\right), 49.9\left(\mathrm{OCH}_{2}\right), 45.9\left(\mathrm{C}_{\mathrm{q}}\right), 37.4\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 37.0\left(\mathrm{C}_{q} \mathrm{CH}_{2} \mathrm{~S}\right), 20.9,20.8$, 20.6, 20.5, 20.5, $20.4\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.0-9.6 (m, 12P).
$\boldsymbol{m} / \mathbf{z}$ (MALDI-TOF/DHB matrix) for $\mathrm{C}_{2557} \mathrm{H}_{3596} \mathrm{~N}_{276} \mathrm{O}_{1388} \mathrm{P}_{12} \mathrm{~S}_{4}=60908.9$; found: 59682-centered Gaussian.
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=1.07 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=7.6 \mathrm{~nm}$.
GPC measurements $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{w}=76570 ; M_{\mathrm{n}}=75530, \mathrm{PDI}\left(M_{w} / M_{\mathrm{n}}\right)=1.014$.

Figure S179. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $39\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S180. gCOSY spectrum of compound 39

Figure S181. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $39\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 145000\right.$ scans)

Figure S182. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $39\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S183. MALDI-TOF (DHB matrix) of compound 39

Polydispersity(Mw/Mn) : 1.014 ± 0.132 (13\%)
Polydispersity(Mz/Mn) : 1.038 ± 0.248 (248)

Figure S184. GPC trace $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right)$ for compound 39

Defectuous glycodendrimer 39a (location of propargylic functions is arbitrary)

To a solution of icosapropargylated cyclotriphosphazene derivative $34(2.66 \mathrm{mg}, 0.62 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(3 \mathrm{~mL})$, were added azido derivative $14\left(30.0 \mathrm{mg}, 10.6 \mu \mathrm{~mol}, 17.0\right.$ eq.) , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.3 \mathrm{mg}, 21.1 \mu \mathrm{~mol}$, 34.0 eq.) and sodium ascorbate ($4.2 \mathrm{mg}, 21.1 \mu \mathrm{~mol}, 34.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (30 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (20 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 20 \mathrm{~mL})$, water (20 mL) and brine (10 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.90: 10\right)$ afforded desired mixture of compounds presenting an average of 3 remaining propargylic functionalities 39 a $(24.0 \mathrm{mg}, 0.47$ $\mu \mathrm{mol}, 75 \%$) (based on a MW = 52414 for 17 grafted dendrons) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.15, \mathrm{DCM} / \mathrm{MeOH} 94: 6$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.93 (s, 17H, $H_{\text {int-triazole }}$), 7.73 (s, $48 \mathrm{H}, H_{\text {ext-triazole }}$), $7.28\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{b^{\prime}}+\mathrm{NH}_{\text {int }}\right)$, 6.99-6.60 (br s, $\left.105 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}+\mathrm{NH}_{\text {ext }}\right), 5.33\left(\mathrm{br} \mathrm{s}, 51 \mathrm{H}, \mathrm{H}_{\text {agal }}\right), 5.19\left(\mathrm{t}_{\text {app }}, 51 \mathrm{H}, \mathrm{H}_{3 \mathrm{glc}}\right), 5.10-5.02\left(\mathrm{~m}, 85 \mathrm{H}, \mathrm{C}_{\text {q- }}\right.$ triazole $\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{\text {2gal }}$), $4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 51 \mathrm{H}, H_{\text {gaal }}\right), 4.83\left(\mathrm{t}_{\text {app }}, 51 \mathrm{H}, H_{2 g 10}\right), 4.70-4.60(\mathrm{br} \mathbf{s}, 6 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{C}=\mathrm{CH}$ res.), 4.54-4.47 ($\mathrm{m}, 357 \mathrm{H}, \mathrm{C}_{\text {q.triazole }} \mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{\text {iglc }}, H_{\text {6aglc }}, H_{\text {igal }}$), 4.10-4.02 (m, 153H, $H_{\text {bgglc }}$, $H_{\text {6agal }}, H_{\text {6bgal }}$, 3.86-3.53 (m, 1011H, C $\mathrm{C}_{\text {-tríazole }} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}, \mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{H}_{\text {5gal }}, H_{5 \text { glc }}, H_{\text {gglc }}, \mathrm{OCH}_{2}$, $\mathrm{HNCOCH}_{2} \mathrm{~S}$), 2.82 (br s, $8 \mathrm{H}, \mathrm{C}_{9} \mathrm{CH}_{2} \mathrm{~S}$), $\mathbf{2 . 6 5 (2 \times b r} \mathbf{s}, \mathbf{3 H}, \mathbf{O C H}_{2} \mathbf{C}=\mathbf{C H}$ res.), 2.11-1.92 ($\mathrm{m}, 1071 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, $168.9\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 166.3\left(\mathrm{CONH}_{\text {int }}\right)$, $165.2\left(\mathrm{CONH}_{\text {ext }}\right), 155.3\left(C_{\mathrm{a}}\right), 154.0\left(C_{\mathrm{a}}\right), 149.9\left(C_{\mathrm{d}}\right), 144.3\left(C_{\mathrm{d}}\right), 144.2\left(C_{\text {trizazol }}=\mathrm{CH}\right), 143.3\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $135.2\left(C_{\mathrm{a}^{\mathrm{a}}}\right)$,
$125.4\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $123.9\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $121.4\left(C_{\mathrm{b}^{\prime}}\right), 116.1\left(C_{\mathrm{b}}\right), 115.2\left(C_{\mathrm{b}}\right), 101.0\left(C_{\text {1gal }}\right), 100.4\left(C_{1 \text { glc }}\right), 76.2$ $\left(C_{4 \mathrm{glc}}\right), 72.8\left(C_{3 \mathrm{glc}}\right), 72.6\left(C_{5 \mathrm{glc}}\right), 71.6\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.4,70.3,70.2,70.2,70.0,69.3\left(\mathrm{OCH}_{2}\right), 69.0$ $\left(C_{2 g a l}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.6\left(\mathrm{C}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right), 66.6\left(C_{4 \mathrm{gal}}\right), 64.5\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{6 \mathrm{glc}}\right), 61.9\left(C_{\mathrm{q}}\right), 60.6\left(C_{6 g a l}\right), 60.3\left(\mathrm{NCH}_{2}\right)$, $56.1\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$ res. $)$, $52.5\left(\mathrm{HNCOCH}_{2} \mathrm{~N}_{\text {triazole }}\right), 49.9\left(\mathrm{OCH}_{2}\right), 45.9\left(C_{q}\right), 37.4\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 37.0\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{~S}\right), 20.9$, 20.8, 20.6, 20.5, 20.5, 20.4 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
m/z (MALDI-TOF/DHB matrix), found: 50696-centered Gaussian.
GPC measurements $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right): M_{\mathrm{w}}=73780 ; M_{\mathrm{n}}=72270, \mathrm{PDI}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.021$

Figure S185. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 9 a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S186. gCOSY spectrum of compound 39a

Figure S187. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 9 a}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 58000\right.$ scans)

Figure S188. MALDI-TOF (DHB matrix) spectrum of compound 39a

Polydispersity(Mw/Mn) : 1.021 ± 0.145 (14\%)
Polydispersity(Mz/Mn) : 1.063 ± 0.283 (278)

Molar Mass Moments (g/mol)		
$\mathbf{M n}$	$\vdots .227 e+04$	(9\%)
Mw	$\vdots 7.378 e+04$	$(1 C \vartheta)$

Figure S189. GPC trace $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(1 \%)\right)$ for compound 39a

Protected nonacontavalent glycodendrimer 40

To a solution of tricontapropargylated cyclotriphosphazene derivative 35 ($3.80 \mathrm{mg}, 0.59 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) in a 1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(4 \mathrm{~mL})$, were added azido dendron $14\left(83.2 \mathrm{mg}, 29.4 \mu \mathrm{~mol}, 50.0 \mathrm{eq}\right.$.) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(6.10 \mathrm{mg}, 23.5$ $\mu \mathrm{mol}, 40.0 \mathrm{eq}$.) and sodium ascorbate ($4.80 \mathrm{mg}, 23.5 \mu \mathrm{~mol}, 40.0$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temper ature for additional 18 hours. Noteworthy is the fact that 3.0 mg of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and 2.0 mg of sodium ascorbate were added to the solution after the 3 hours of heating. Ethyl acetate (5 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (20 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 20 \mathrm{~mL})$, water (20 mL) and brine (10 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}$ 100:0 to 90:10) afforded desired multivalent compound $\mathbf{4 0}$ ($38.0 \mathrm{mg}, 0.42 \mu \mathrm{~mol}, \mathbf{7 2 \%}$) as a pale oil.
$\mathbf{R}_{\mathrm{f}}=0.13, \mathrm{DCM} / \mathrm{MeOH} 94: 6$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.93\left(\mathrm{~s}, 30 \mathrm{H}, H_{\text {inttriazole }}\right), 7.73\left(\mathrm{~s}, 90 \mathrm{H}, H_{\text {exttriazole }}\right), 7.28\left(\mathrm{br} \mathrm{s}, 42 \mathrm{H}, \mathrm{CH}_{b^{\prime}}+\mathrm{NH}_{\text {ext }}\right)$, 6.99-6.60 (br s, $\left.138 \mathrm{H}, \mathrm{CH}_{b}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}+\mathrm{NH}_{\text {int }}\right), 5.32\left(\mathrm{br} \mathrm{s}, 90 \mathrm{H}, \mathrm{H}_{\text {4gal }}\right), 5.16\left(\mathrm{t}_{\text {tap }}, 90 \mathrm{H}, \mathrm{H}_{\text {3glc }}\right), 5.10-5.02\left(\mathrm{~m}, 150 \mathrm{H}, \mathrm{C}_{\mathrm{q}}\right.$ triazole $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{\text {2gal }}\right), 4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 90 \mathrm{H}, \mathrm{H}_{\text {galal }}\right.$), $4.86\left(\mathrm{t}_{\text {app }}, 90 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}\right), 4.54-4.47\left(\mathrm{~m}, 630 \mathrm{H}, \mathrm{C}_{\text {q- }}\right.$ triazole $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{\text {gglc }}, H_{\text {6aglc }}, H_{\text {igal }}\right), 4.14-4.02\left(\mathrm{~m}, 282 \mathrm{H}, \mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}, H_{6 \text { bglc }}, H_{\text {6agal }}, H_{\text {6bgal }}\right)$, 3.95-3.25 (m, $\left.1782 \mathrm{H}, \mathrm{C}_{\text {q.tríazole }} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}, \mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{H}_{\text {5gal }}, H_{5 g l c}, H_{4 g \mathrm{lc}}, \mathrm{OCH}_{2}, \mathrm{HNCOCH}_{2} \mathrm{~S}\right)$, 2.11-1.92 (m, $1890 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.2, 170.2, 170.0, 169.9, 169.6, 169.5, $168.9\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$, $165.9\left(\mathrm{CONH}_{\text {int }}\right)$, $165.6\left(\mathrm{CONH}_{\text {ext }}\right)$, $155.3\left(C_{\mathrm{a}}\right), 149.9\left(C_{\mathrm{d}^{\prime}}\right)($ not visible $), 144.3\left(C_{\mathrm{d}}\right), 144.2\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $143.3\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $136.2\left(\mathrm{C}_{\mathrm{q} \text { core }}\right)$
(not visible), $135.2\left(C_{\mathrm{a}^{\prime}}\right)$ (not visible), $125.5\left(\mathrm{C}_{\text {triazole }}=C H\right), 123.9\left(\mathrm{C}_{\text {triazole }}=C H\right.$), $121.8\left(C_{\mathrm{c}}\right), 121.4\left(C_{\mathrm{b}^{\prime}}\right), 116.1\left(C_{\mathrm{b}}\right), 115.1$ $\left(C_{\mathrm{b}}\right), 101.0\left(C_{1 \mathrm{gal}}\right), 100.5\left(C_{1 \mathrm{glc}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.8\left(C_{3 \mathrm{glc}}\right), 72.6\left(C_{5 \mathrm{glc}}\right), 71.6\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 70.4,70.3$, 70.2, 70.2, 70.0, $69.3\left(\mathrm{OCH}_{2}\right), 69.0\left(C_{2 g a l}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.6\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.6\left(C_{4 \mathrm{gal}}\right), 64.5\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right)$, $62.0\left(C_{6 \mathrm{glc}}\right)$, $61.9\left(C_{q}\right), 60.6\left(C_{6 g a l}\right), 60.3\left(\mathrm{NCH}_{2}\right), 52.5\left(\mathrm{HNCOCH}_{2} \mathrm{~N}_{\text {triazole }}\right), 49.9\left(\mathrm{OCH}_{2}\right), 37.3\left(\mathrm{SCH}_{2} \mathrm{CONH}\right), 31.2\left(\mathrm{C}_{\text {core }} \mathrm{CH}_{2} \mathrm{~S}\right), 20.9$, 20.8, 20.6, 20.5, 20.5, $20.4\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.0-9.2 (m, 18P).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-TOF/DHB matrix) for $\mathrm{C}_{3840} \mathrm{H}_{5394} \mathrm{~N}_{414} \mathrm{O}_{2082} \mathrm{P}_{18} \mathrm{~S}_{6}=91417.4$; found: 79824-centered Gaussian.
NMR diffusion studies $\left(\mathrm{CDCl}_{3}\right): D=0.81 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=10.1 \mathrm{~nm}$.

Figure S190. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 0}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S191. gCOSY spectrum of compound 40

Figure S192. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 0}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 60000\right.$ scans)

Figure S193. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{4 0}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

Figure S194. MALDI-TOF (DHB matrix) spectrum of compound 40

Hydroxylated nonacontavalent glycodendrimer 41

Acetylated compound $40(22.0 \mathrm{mg}, 0.24 \mu \mathrm{~mol})$ was dissolved in dry $\mathrm{MeOH} / \mathrm{DCM}(3+0.5 \mathrm{~mL})$ and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional $100 \mu \mathrm{~L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and another dry mixture of $\mathrm{MeOH} / \mathrm{DCM}(5 \mathrm{~mL}, 4: 1$) is added to the residual oil. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvents with a Pasteur pipette, 2 mL of dry MeOH were added to the viscous residue under agitation. After 15 min ., the MeOH was removed and the residue was dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected compound 41 as a white solid ($14.0 \mathrm{mg}, 0.22 \mu \mathrm{~mol}$) in an 85% yield.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): ~ 8.15-7.89\left(\mathrm{~m}, 120 \mathrm{H}, H_{\text {triazole }}\right), 7.55-7.28\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{b}^{\prime}}\right), 6.84-6.77\left(\mathrm{~m}, 132 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, 5.20-5.14 (m, 120H, $\mathrm{NHCOCH}_{2} \mathrm{~N}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 4.62-4.44 (m,540H, CH $\mathrm{N}_{2} \mathrm{~N}, \mathrm{C}_{\text {q-triazole }} \mathrm{CH}_{2} \mathrm{O}, 36 \mathrm{H}, H_{\text {1glc }}, H_{\text {1gal }}$), 4.02-3.55 (m, 2430, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{3 g l c}, H_{2 g a l}, H_{3 g a l}, H_{6 \mathrm{bglc}}, H_{6 a g a l}, H_{6 \mathrm{bgal}}, H_{6 \mathrm{aglc}}, H_{5 g a l}, H_{5 g l c}, H_{4 g l \mathrm{c}}, H_{4 \mathrm{gal}}$, LacOCH $\mathrm{CH}_{2}, \mathrm{OCH}_{2}$, $\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 3.22 ($\mathrm{t}_{\text {app }}, 90 \mathrm{H}, \mathrm{H}_{2 \mathrm{glc}}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 167.1\left(C_{\text {ext }} \mathrm{ONH}\right.$), $165.0\left(C_{\mathrm{int}} \mathrm{ONH}\right)$ (not visible), 155.8-155.7 $\left(2 \times C_{\mathrm{a}}\right), 144.6\left(C_{\mathrm{d}}\right)$, $143.7\left(C_{\text {triazole }}=\mathrm{CH}\right), 136.2\left(C_{\text {ar-core }}\right)$ (not visible), $127.0\left(\mathrm{C}_{\text {triazole }}=C H\right), 125.9\left(\mathrm{C}_{\text {triazole }}=C H\right), 122.4\left(C_{\mathrm{c}}\right), 116.3\left(C_{\mathrm{b}}\right), 103.6$ $\left(C_{1 \mathrm{gal}}\right), 102.8\left(C_{19 \mathrm{clc}}\right), 79.1\left(C_{4 \mathrm{glc}}\right), 76.0\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5\left(C_{2 \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3,70.2$, 70.2, 70.2, $70.1\left(\mathrm{OCH}_{2}\right), 69.3\left(\mathrm{C}_{4 \mathrm{gal}}\right)$, $69.2\left(\mathrm{OCH}_{2}\right), 68.1\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 64.2\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 62.0\left(C_{\mathrm{q}}\right)$ (not visible), 61.7
$\left(C_{6 \text { glc }}\right), 60.9\left(C_{6 g a l}\right), 60.8\left(\mathrm{OCH}_{2}\right), 53.0\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CO}\right), 50.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.8\left(\mathrm{SCH}_{2} \mathrm{CONH}\right)$ (not visible), $31.2\left(\mathrm{C}_{\mathrm{ar}} \mathrm{CH}_{2} \mathrm{~S}\right)$ (not visible).
${ }^{31}$ P NMR (122 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right):$ 10.7-9.5 (m, 18P).
$\boldsymbol{m} / \boldsymbol{z}$ (MALDI-TOF/DHB matrix) for $\mathrm{C}_{2580} \mathrm{H}_{4134} \mathrm{~N}_{414} \mathrm{O}_{1452} \mathrm{P}_{18} \mathrm{~S}_{6}=64934.3$, found 56530 -centered Gaussian.
NMR diffusion studies $\left(\mathrm{D}_{2} \mathrm{O}\right): D=0.60 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; d_{s}=6.6 \mathrm{~nm}$

Figure S195. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $41\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

Figure S196. gCOSY spectrum of compound 41

Figure S197. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $41\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right.$, acetone as reference, 81000 scans)

Figure S198. ${ }^{31}$ P NMR spectrum of compound $41\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

Figure S199. MALDI-TOF (DHB matrix) spectrum of compound 41

Synthesis of monomeric reference 43

To a solution of 2-(2-\{2-[2-(2-azido-ethoxy)-ethoxy]-ethoxy\}-ethyl) 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-$2,3,6$-tri-O-acetyl- β-D-glucopyranoside $\mathbf{1 0}^{1}\left(100.0 \mathrm{mg}, 119.3 \mu \mathrm{~mol}, 1.0\right.$ eq.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added propargyl alcohol ($28.1 \mathrm{mg}, 29.1 \mu \mathrm{~L}, 501.3 \mu \mathrm{~mol}, 4.2 \mathrm{eq}$.), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14.9 \mathrm{mg}, 59.7 \mu \mathrm{~mol}, 0.5 \mathrm{eq}$.) and sodium ascorbate ($11.8 \mathrm{mg}, 59.7 \mu \mathrm{~mol}, 0.5$ eq.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate $(10 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $\left.92: 8\right)$ afforded desired compound S43 ($86.0 \mathrm{mg}, 96.6 \mu \mathrm{~mol}, \mathbf{8 1 \%}$) as a white foam.
$\mathbf{R}_{\mathrm{f}}=0.30, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.75\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole }}\right), 5.29\left(\mathrm{~d}_{\text {app }}, 1 \mathrm{H}, H_{4 \text { gal }}\right), 5.14\left(\mathrm{dd},{ }^{3} J_{4,3}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=9.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, H_{3 g \mathrm{c}}$), $5.05\left(\mathrm{dd},{ }^{3} J_{2,1}=10.5 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, H_{2 \mathrm{gal}}\right), 4.93\left(\mathrm{dd},{ }^{3} J_{2,3}=10.5 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{3 g a l}\right), 4.83$ $\left(\mathrm{dd},{ }^{3} J_{2,1}=9.4 \mathrm{~Hz},{ }^{3} J_{3,2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.73\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.53\left(\mathrm{~d},{ }^{3} J_{1,2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{1 \mathrm{glc}}\right), 4.50\left(\mathrm{t}_{\text {app }}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.48\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{6 \mathrm{a} .6 \mathrm{~b}}=12.0 \mathrm{~Hz},{ }^{3} J_{5.6 \mathrm{a}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{6 \mathrm{aglc}}\right), 4.47\left(\mathrm{~d},{ }^{3} J_{1,2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{1 \mathrm{gal}}\right), 4.12-4.00\left(\mathrm{~m}, 3 \mathrm{H}, H_{6 \mathrm{bglc}}\right.$, $\left.H_{6 \text { agal }}, H_{6 \text { bgal }}\right), 3.90-3.52\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{OCH}_{2}, H_{4 \mathrm{glc}}, H_{5 \text { gal }}, H_{5 \mathrm{glc}}\right.$), $3.30\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}\right.$), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.04\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{COCH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 170.2, 170.0, 169.9, 169.7, 169.6, $169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 147.7\left(C_{\mathrm{q} \text { triazole }}\right)$, $122.9\left(\mathrm{CH}_{\text {triazole }}\right), 100.9\left(C_{1 \text { gal }}\right), 100.4\left(C_{1 \text { glc }}\right), 76.6\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.8\left(C_{3 \text { gal }}\right), 70.5\left(C_{5 g a l}\right)$, 70.3, 70.3, 70.2, $70.2\left(\mathrm{OCH}_{2}\right), 69.3\left(C_{2 \text { gal }}\right), 69.0,68.9\left(\mathrm{OCH}_{2}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 61.8\left(C_{6 \mathrm{glc}}\right), 60.7\left(C_{6 g a l}\right), 56.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 50.0$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 20.8,20.8,20.7,20.6,20.6,20.6,20.5\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right)$.
$\boldsymbol{m} / \mathbf{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{22}=894.3350[\mathrm{M}+\mathrm{H}]^{+}$; found 894.3361; $916.3169[\mathrm{M}+\mathrm{Na}]^{+}$; found 916.3181.

Figure S200. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{S 4 3}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S201. gCOSY spectrum of compound S43

Figure S202. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 4 3}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed \mathbf{m} / \mathbf{z}	Calc m/z	Diff (ppm)
$(\mathrm{M}+\mathrm{H})+$	C37H56N3O22	1193152.62	894.33614	894.335	1.27
$(\mathrm{M}+\mathrm{Na})+$	C37H55N3NaO22	1308225.57	916.31805	916.31694	1.21

Figure S203. ESI $^{+}$-HRMS spectrum of compound S43

Acetylated compound S43 ($86.0 \mathrm{mg}, 96.2 \mu \mathrm{~mol}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 150 \mu \mathrm{~L}$) was added. The reaction mixture was stirred at room temperature for 24 hours. The pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected reference 43 as a white solid ($52.5 \mathrm{mg}, 87.6 \mu \mathrm{~mol}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 8.03\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole }}\right), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 4.64\left(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.52$ (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{1 \mathrm{glc}}\right), 4.46\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{1 \mathrm{gal}}\right), 4.08-3.53\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, O \mathrm{OCH}_{2}, H_{3 g \mathrm{c}}, H_{2 \mathrm{gal}}, H_{3 g a l}, H_{6 \mathrm{bglc}}\right.$, $\left.H_{4 g a l}, H_{6 a g a l}, H_{6 \text { bgal }}, H_{6 a g l c}, H_{5 g a l}, H_{5 g l c}, H_{4 g l c}\right), 3.36\left(\mathrm{~m}, 6 \mathrm{H}, H_{2 g l c}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 147.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 125.1\left(\mathrm{C}_{\text {triazole }}=C H\right), 103.6\left(C_{1 \text { gal }}\right), 102.7\left(C_{1 \mathrm{glc}}\right), 79.0\left(C_{4 \mathrm{glc}}\right), 76.0$ $\left(C_{3 \mathrm{glc}}\right), 75.4\left(C_{5 \mathrm{glc}}\right), 75.0\left(C_{5 \mathrm{gal}}\right), 73.5\left(C_{2 \mathrm{glc}}\right), 73.2\left(C_{3 \mathrm{gal}}\right), 71.6\left(C_{2 \mathrm{gal}}\right), 70.3,70.2,70.1,70.1,69.4,\left(\mathrm{OCH}_{2}\right), 69.2\left(C_{4 \mathrm{gal}}\right)$, $61.7\left(C_{6 g 1 c}\right), 60.7\left(C_{6 g a l}\right), 55.3\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 50.7\left(\mathrm{NCH}_{2}\right)$.
$\boldsymbol{m} / \boldsymbol{z}\left(E S I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{15}=600.2610[\mathrm{M}+\mathrm{H}]^{+}$; found $600.2618 ; 622.2430[\mathrm{M}+\mathrm{Na}]^{+}$; found 622.2438.

Figure S204. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $43\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$

Figure S205. gCOSY spectrum of compound 43

Figure S206. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $43\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed m/z	Calc m/z	Diff (ppm)
$(\mathrm{M}+\mathrm{H})+$	C 23 H 42 N 3015	393220.81	600.26181	600.26104	1.28
$(\mathrm{M}+\mathrm{Na})+$	C 23 H 41 N 3 NaO 15	1074960.28	622.24379	622.24299	1.28

Figure S207. ESI ${ }^{+}$-HRMS spectrum of compound 43

Synthesis of monomeric reference lacking PEG chain 44

Acetylated compound ${\mathrm{S} 44^{7}}^{7}$ ($100.0 \mathrm{mg}, 139.0 \mu \mathrm{~mol}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 150 \mu \mathrm{~L}$) was added. The reaction mixture was stirred at room temperature for 24 hours. The pH was adjusted to 7 with addition of ion-exchange resin (Amberlite $\mathrm{IR} 120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected reference 44 as a white solid ($45.6 \mathrm{mg}, 108.0 \mu \mathrm{~mol}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 8.19\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole }}\right), 5.76\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {1glc }}\right), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 4.48(\mathrm{~d}, J=$ $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{1 \text { gal }}\right), 4.04\left(\mathrm{t}_{\text {app }}, 1 \mathrm{H}, H_{2 g \mathrm{c}}\right), 3.95-3.64\left(\mathrm{~m}, 10 \mathrm{H}, H_{3 \mathrm{glc}}, H_{3 \mathrm{gal}}, H_{4 \mathrm{glc}}, H_{4 \mathrm{gal}}, H_{5 g l c}, H_{5 g a l}, H_{6 g l \mathrm{c}}, H_{6 \mathrm{gal}}\right), 3.54(\mathrm{dd}, J=$ $\left.7.7 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2 \mathrm{gal}}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 148.2\left(C_{\text {triazole }}\right), 120.2\left(\mathrm{CH}_{\text {triazole }}\right), 101.1\left(C_{1 \text { gal }}\right), 85.5\left(C_{1 \mathrm{glc}}\right), 75.9\left(C_{4 \mathrm{glc}}\right), 75.5\left(C_{3 \mathrm{glc}}\right)$, $72.5\left(C_{5 g \mathrm{cl}}\right), 70.9\left(C_{2 \mathrm{glc}}\right), 70.8\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 \mathrm{gal}}\right), 69.0\left(C_{2 \text { gal }}\right), 66.5\left(C_{4 \mathrm{gal}}\right), 61.7\left(C_{6 \mathrm{gal}}\right), 60.8\left(C_{6 \mathrm{glc}}\right), 56.3\left(\mathrm{CH}_{2} \mathrm{OH}\right)$. $\boldsymbol{m} / \mathbf{z}\left(E S I^{+} \mathrm{HRMS}\right)$ for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{11}=424.1562[\mathrm{M}+\mathrm{H}]^{+}$, found: 424.1556; 446.1381[M+Na] ${ }^{+}$, found: 446.1372.

Figure S208. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $44\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$

[^7]

Figure S209. gCOSY spectrum of compound 44

Figure S210. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $44\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right)$

MS Specturim

MS Zoomed Spectrum

MS Spectrum Peak List
MS Spectrum Peak List

Ion	Ion Formula	Abund	Expc, $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+\mathrm{H})+$	C15 H26 N3 O11	22407	424.15556	424.15619	-1.46
$(\mathrm{M}+\mathrm{Na})+$	C15 H25 N3 Na O11	16592	446.13724	446.13813	-2

Figure S211. ESI ${ }^{+}$-HRMS spectrum of compound 44

Negative control 45

To a solution of propargylated derivative $\mathbf{1}\left(30.0 \mathrm{mg}, 29.4 \mu \mathrm{~mol}, 1.0 \mathrm{eq}\right.$.) in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added acetylated tetra(ethylene)glycol azide S45a ($92.4 \mathrm{mg}, 354 \mu \mathrm{~mol}, 12.0$ eq., previously obtained from acetylation of hydroxylated derivative in classical conditions ($\mathrm{Ac}_{2} \mathrm{O} / P y$ ridine $/ D M A P_{\text {cat }}$ at $25^{\circ} \mathrm{C}$, o.n., $\mathrm{R}_{\mathrm{f}}=0.6(3 \% \mathrm{MeOH}$ in $D C M)$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(80.0 \mathrm{mg}, 320 \mu \mathrm{~mol}, 10.8 \mathrm{eq}$.) and sodium ascorbate ($70.0 \mathrm{mg}, 320 \mu \mathrm{~mol}, 10.8 \mathrm{eq}$.) While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, DCM/MeOH 99:1 to 96:4) afforded desired acetylated multivalent compound S45b which was directly dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$. A solution of sodium methoxide (1 M in $\mathrm{MeOH}, 150 \mu \mathrm{~L}$)) was added. The reaction mixture was stirred at room temperature for 18 hours. The pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator and purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 85: 15\right.$) to afford pure reference $\mathbf{S 4 5}$ as viscous oil ($48.8 \mathrm{mg}, 20.9 \mu \mathrm{~mol}, 71 \%$ (2 steps)).
$\mathbf{R}_{\mathrm{f}}=0.12$, DCM/MeOH 85:15.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right): 8.1\left(\mathrm{~s}, 6 \mathrm{H}, H_{\text {triazole }}\right), 6.87-6.77\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{\text {ar }}\right), 5.14\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 4.55$ ($\left.\left.\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 3.85\left(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 3.63-3.48(\mathrm{~m}, 72 \mathrm{H}, \mathrm{OCH})_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, $\delta \mathrm{ppm}$): $156.9\left(C_{\mathrm{a}}\right)$, $145.8\left(C_{\text {triazole }}=\mathrm{CH}\right)$, $144.7\left(C_{\mathrm{d}}\right), 126.3\left(\mathrm{C}_{\text {triazole }}=C H\right), 123.0\left(C_{\mathrm{c}}\right), 116.8$ $\left(C_{b}\right), 73.7\left(\mathrm{C}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{O}\right), 71.5,71.5,71.4,70.3,62.9,62.2\left(\mathrm{OCH}_{2}\right), 51.4\left(\mathrm{NCH}_{2}\right)$.
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$): 10.1 (m, 3P).
$\boldsymbol{m} / \boldsymbol{z}$ (ESI ${ }^{+}-\mathrm{HRMS}$) for $\mathrm{C}_{102} \mathrm{H}_{144} \mathrm{~N}_{210} \mathrm{O}_{36} \mathrm{P}_{3}=1166.9721[\mathrm{M}+2 \mathrm{H}]^{+}$; found 1166.9663; 1188.9540 [M+2Na] ${ }^{2+}$; found 1188.9547.

Figure S212. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $45\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right)$

Figure S213. gCOSY spectrum of compound 45

Figure S214. ${ }^{13} \mathrm{P}$ NMR spectrum of compound $45\left(\mathrm{CD}_{3} \mathrm{OD}, 122 \mathrm{MHz}\right)$

Figure S215. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $45\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right)$

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed \mathbf{m} / \mathbf{z}	Calc \mathbf{m} / \mathbf{z}	Diff (ppm)
$(\mathrm{M}+2 \mathrm{H})+2$	C 114 H 156 N 21042 P 3	23800.17	1292.99974	1293.00376	3.11
$(\mathrm{M}+2 \mathrm{Na})+2$	C 114 H 156 N 21042 P 3	44595.1	1314.98672	1314.9857	-0.77

Figure S216. ESI $^{+}$-HRMS spectrum of compound S45b

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Formula	Abund	Observed \mathbf{m} / \mathbf{z}	Calc \mathbf{m} / \mathbf{z}	Diff (ppm)
$(\mathrm{M}+2 \mathrm{H})+2$	C 102 H 144 N 21036 P 3	13457.15	1166.96627	1166.97206	4.96
$(\mathrm{M}+2 \mathrm{Na})+2$	C 102 H 144 N 21036 P 3	31620.56	1188.9547	1188.95401	-0.58

Figure S217. ESI ${ }^{+}$-HRMS spectrum of compound 45

Synthesis of hexavalent analog of 1 lacking PEG chains

To a solution of propargylated derivative $1(13.5 \mathrm{mg}, 13.1 \mu \mathrm{~mol}, 1.0$ eq.) dissolved in a vial in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}_{\text {anh }}(5 \mathrm{~mL})$, were added lactosyl azide ${ }^{8}\left(72.6 \mathrm{mg}, 110.0 \mu \mathrm{~mol}, 8.4 \mathrm{eq}\right.$.) , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(23.5 \mathrm{mg}, 94.1 \mu \mathrm{~mol}, 7.2$ eq.) and sodium ascorbate ($18.6 \mathrm{mg}, 94.1 \mu \mathrm{~mol}, 7.2 \mathrm{eq}$.). While stirring, the mixture was first heated at $50^{\circ} \mathrm{C}$ for 3 hours in a 20 mL vial and at room temperature for additional 18 hours. Ethyl acetate (15 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \times 10 \mathrm{~mL})$, water (10 mL) and brine (5 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 99: 1$ to $96: 4$) afforded desired acetylated multivalent compound $\mathbf{1 a}(57.2 \mathrm{mg}, 9.99 \mu \mathrm{~mol}, 76 \%$) which was directly dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$. A solution of sodium methoxide (1 M in $\mathrm{MeOH}, 150 \mu \mathrm{~L}$)) was added. The reaction mixture was stirred at room temperature for 18 hours. The solvent was then removed with a Pasteur pipette and dry $\mathrm{MeOH}(3 \mathrm{~mL})$ is added to the residual solid. A vigorous agitation is maintained for an additional 15 min . period. After removal of the solvent with a Pasteur pipette, 3 mL of $\mathrm{H}_{2} \mathrm{O}$ were added to the solid residue. The pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator to afford pure reference 1b as viscous colorless oil ($30.5 \mathrm{mg}, 9.30 \mu \mathrm{~mol}, 75 \%(2$ steps)).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}$): $7.94\left(\mathrm{~s}, 6 \mathrm{H}, H_{\text {Triazole }}\right), 6.49\left(\mathrm{br} \mathrm{s}, 24 \mathrm{H}, \mathrm{CH}\right.$ arom), $5.49\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 6 \mathrm{H}, H_{1 \mathrm{glc}}\right), 4.48(\mathrm{br}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 154.5\left(C_{\mathrm{a}}\right)$, $143.5\left(C_{\text {Triazole }}\right)$, $142.8\left(C_{\mathrm{d}}\right), 123.9\left(\mathrm{CH}_{\text {Triazole }}\right), 121.3\left(C_{\mathrm{c}}\right), 116.5\left(C_{\mathrm{b}}\right), 102.6$
 $60.7\left(C_{6 g a l}\right), 60.6\left(\mathrm{OCH}_{2}\right), 59.3\left(C_{6 \mathrm{glc}}\right)$.

[^8]${ }^{31}$ P NMR (122 MHz, CDCl_{3}, $\delta \mathrm{ppm}$): 10.3 (s, 3P).
$\mathbf{m} / \mathbf{z}\left(E S I^{+}-H R M S\right)$ for $\mathrm{C}_{126} \mathrm{H}_{168} \mathrm{~N}_{21} \mathrm{O}_{72} \mathrm{P}_{3}=1632.9564[\mathrm{M}+2 \mathrm{Na}]^{2+}$; found 1632.9574.

Figure S218. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$

Figure S219. gCOSY spectrum of compound 1b

Figure S220. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 b}\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$

Figure S221. ${ }^{13} \mathrm{P}$ NMR spectrum of compound $\mathbf{1 b}\left(\mathrm{D}_{2} \mathrm{O}, 122 \mathrm{MHz}\right)$

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. m / z	Calc. m / z	Diff(ppm)
$(\mathrm{M}+4 \mathrm{Na})+4$	$\mathrm{C} 126 \mathrm{H} 168 \mathrm{~N} 21 \mathrm{Na4O72P3}$	948.2	827.97384	827.9728	1.27
$(\mathrm{M}+3 \mathrm{H})+3$	$\mathrm{C} 126 \mathrm{H} 171 \mathrm{~N} 21072 \mathrm{P3} 3$	7035.6	1074.32156	1074.31871	2.66
$(\mathrm{M}+3 \mathrm{Na})+3$	$\mathrm{C} 126 \mathrm{H} 168 \mathrm{~N} 21 \mathrm{Na3O72P3}$	9349.4	1096.30229	1096.30065	1.49
$(\mathrm{M}+2 \mathrm{H})+2$	$\mathrm{C} 126 \mathrm{H} 170 \mathrm{~N} 21072 \mathrm{P3}$	5351.3	1610.97588	1610.97442	0.91
$(\mathrm{M}+2 \mathrm{Na})+2$	$\mathrm{C} 126 \mathrm{H} 168 \mathrm{~N} 21 \mathrm{Na} 2 \mathrm{O} 2 \mathrm{P3} 3$	4041	1632.95736	1632.95637	0.61

Figure S222. ESI $^{+}$-HRMS spectrum of compound 1b

Synthetic sequence for the construction of "onion peel" glycodendrimer with 45 peripheral protected lactosides

A highly accelerated convergent approach based on the three-fold coupling of $A B_{15}$ hypermonomer around an extended core was investigated (Scheme 10). To this end, three tetra(ethylene)glycol chains containing one terminal propargylic function (S2) ${ }^{9}$ were introduced onto commercial phloroglucinol S1. NMR spectra of S3 clearly indicated desired O -alkylations with characteristic signal of $\mathrm{CH}_{\mathrm{ar}}$ in ${ }^{1} \mathrm{H}$ NMR at $\delta 6.03 \mathrm{ppm}$ integrating for three protons, together with two distinctive signals in ${ }^{13} \mathrm{C}$ NMR at $\delta 160.6$ and 94.4 ppm for $C_{\mathrm{ar}} \mathrm{O}$ and $\mathrm{CH}_{\mathrm{ar}}$, respectively. Relative integrations corresponding to terminal propargylic signals are in addition in full agreement with those from the aromatic section, thus confirming the three-fold substitution. Application of Cu-catalyzed click reaction in the presence of dendron 30 and core S3 furnished the desired "onion peel" glycodendrimer S4 containing 45 peripheral lactoside units, in a satisfactory yield of 53%. Once again, NMR analyses clearly indicated the absence of characteristic signals from precursor 30, notably the triplet at $\delta 2.43 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR for $-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and the distinctive signal at $\delta 58.4 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR for $-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$. On the other hand, expected central aromatic's signals mentioned earlier clearly pointed out, confirming the integrity of the macromolecule S4 (See SI). Unfortunately, in deep contrast with other structures presented herein (See the following section), analytical efforts towards the complete characterization of compound S4 were unsuccessful, especially for MALDI-TOF MS and GPC techniques. Protocoles' optimization concerning Mass Spectrometry analyses (matrix) for $\mathbf{S 4}$ is currently under investigation.

[^9]
PEGylated core S3

To a solution of phloroglucinol $\mathbf{S 1}$ (12.4 mg, $98.3 \mu \mathrm{~mol}$, 1.0 eq.) in $\mathrm{DMF}_{\text {anh. }}\left(2 \mathrm{~mL}\right.$), were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (dried at $200^{\circ} \mathrm{C}$ under vacuum) ($81.5 \mathrm{mg}, 590 \mu \mathrm{~mol}, 6.0 \mathrm{eq}$.) and $\mathrm{NaI}\left(1.47 \mathrm{mg}, 9.83 \mu \mathrm{~mol}, 0.1 \mathrm{eq}\right.$.) under a N_{2} atmosphere. A solution of di-functional PEG $\mathbf{S 2}^{9}$ in 0.5 mL of $\mathrm{DMF}_{\text {anh. }}$. was then slowly added and the resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 22 hours. Ethyl acetate (25 mL) was added and the solution was poured into a separatory funnel containing ethyl acetate (10 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 30 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine (15 mL). Organics were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness in vacuo with rotary evaporator. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 100: 0\right.$ to $99: 1$) afforded desired core $\mathbf{S 3}$ ($20.4 \mathrm{mg}, 26.5 \mu \mathrm{~mol}, \mathbf{2 7 \%}$) as a yellowish foam.
$\mathbf{R}_{\mathrm{f}}=0.20, \mathrm{DCM} / \mathrm{MeOH} 97: 3$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $6.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 4.20\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.07(\mathrm{t}, J=4.9 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{C}_{\mathrm{ar}} \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.83\left(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$), 3.70-3.67(m,36H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.44(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$).
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $160.5\left(C_{\mathrm{ar}} \mathrm{O}\right), 94.4\left(\mathrm{CH}_{\mathrm{ar}}\right), 79.7(\mathrm{C} \equiv \mathrm{CH}), 74.5(\mathrm{C} \equiv \mathrm{CH}), 70.8,70.6,70.4,69.6,69.1$, $67.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $58.4\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right)$.
$\boldsymbol{m} / \mathbf{z}\left(E I^{+}-\mathrm{HRMS}\right)$ for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{15}=769.4005[\mathrm{M}+\mathrm{H}]^{+}$; found $769.3993 ; 791.3824[\mathrm{M}+\mathrm{Na}]^{+}$; found 791.3813.

Figure S223. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{S 3}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S224. gCOSY spectrum of compound S3

Figure $\mathbf{S 2 2 5} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 3}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
385.2001	385.2039	-9.87	2	44770	C39 H62 O15	$(\mathrm{M}+2 \mathrm{H})+2$
385.7017	385.7056	-10.16	2	18131	C39 H62 O15	$(\mathrm{M}+2 \mathrm{H})+2$
386.2033	386.207	-9.63	2	5313	C39 H62 O15	$(\mathrm{M}+2 \mathrm{H})+2$
407.1821	407.1858	-9.23	2	1774	C39 H60 Na2 O15	$(\mathrm{M}+2 \mathrm{Na})+2$
769.3993	769.4005	-1.54		371051	C39 H61 O15	$(\mathrm{M}+\mathrm{H})+$
769.7456				22232		
770.4031	770.4039	-1.1		150095	C39 H61 O15	(M+H)+
770.7447				7656		
771.4059	771.4067	-0.97		37361	C39 H61 O15	(M+H)+
772.4081	772.4094	-1.68		6755	C39 H61 O15	(M+H)+
786.4255	786.427	-1.94	1	305440	C39 H64 N O15	(M+NH4)+
787.4296	787.4304	-1.02	1	127114	C39 H64 N O15	(M+NH4)+
788.4314	788.4332	-2.28	1	29899	C39 H64 N 015	(M+NH4)+
789.4336	789.4359	-2.85	1	5880	C39 H64 N O15	(M+NH4)+
791.3813	791.3824	-1.43	1	168368	C39 H60 Na O 15	(M+Na)+

Figure S226. ESI+HRMS spectrum of compound S3

Protected glycodendrimer with 45 peripheral lactosides S4

To a stirring solution of core $\mathbf{S 3}$ ($0.96 \mathrm{mg}, 1.25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and hypermonomer 30 ($80.2 \mathrm{mg}, 5.27 \mu \mathrm{~mol}, 4.2$ eq.) in dry THF (2.5 mL) were added 2.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and a mixture of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.84 \mathrm{mg}, 11.3 \mu \mathrm{~mol}, 9.0 \mathrm{eq}$.) and sodium ascorbate ($2.23 \mathrm{mg}, 1.13 \mu \mathrm{~mol}, 9.0 \mathrm{eq}$.). After stirring for 3 hours at $50^{\circ} \mathrm{C}$ in a 20 mL vial, the reaction was left stirring at room temperature for 18 hours (additional $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{mg})$ and sodium ascorbate (0.80 mg) were incorporated in the mixture after 5 hours of reaction). EtOAc (25 mL) was added and the solution was washed successively with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 15 \mathrm{~mL})$, water $(2 \times 10 \mathrm{~mL})$ and brine (10 mL). The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 100:0 to 93:7) afforded the desired compound S4 ($30.7 \mathrm{mg}, 0.66 \mu \mathrm{~mol}, 53 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.15, \mathrm{DCM} / \mathrm{MeOH} 94: 6$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $\sim 8.00(3 \mathrm{H}, \mathrm{NH})$ (not visible), $7.92-7.90\left(\mathrm{~m}, 18 \mathrm{H}, H_{\text {triazole int }}\right.$), 7.74-7.69 (s, 45H, $H_{\text {triazole ext }}$), 7.40-7.28 (br s, 21H, NH + $\mathrm{CH}_{\mathrm{b}^{\prime}}$), $7.03-6.50\left(\mathrm{~m}, 66 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{c}, \mathrm{CH}_{c^{\prime}}\right), 6.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{ar}), 5.34$ ($\mathrm{d}_{\text {app }}, 45 \mathrm{H}$, $H_{4 \text { gal }}+\operatorname{brs}\left(6 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right)$), $5.17\left(\mathrm{t}_{\text {app }}, 45 \mathrm{H}, H_{3 g \mathrm{c}}\right), 5.10-5.07\left(\mathrm{~m}, 75 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}, H_{2 g a l}\right), 4.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=3.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3,4}=7.0 \mathrm{~Hz}, 45 \mathrm{H}, H_{3 \text { gal }}\right), 4.84\left(\mathrm{t}_{\text {app }}, 45 \mathrm{H}, H_{2 \mathrm{glc}}\right), 4.55-4.46\left(\mathrm{~m}, 315 \mathrm{H}, \mathrm{C}_{q} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{1 \mathrm{glc}}, H_{6 \text { aglc }}, H_{1 \text { gal }}\right), 4.13-$ 4.05 (m, 135H, $\left.H_{6 \text { bglc }}, H_{6 a g a l}, H_{6 \text { bgal }}\right), 3.89-3.55\left(\mathrm{~m}, 933 \mathrm{H}, \mathrm{NHCOCH}_{2} \mathrm{~N}_{\text {triazole }}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, H_{5 g a l}, H_{5 g l c}, H_{4 g \mid c}, \mathrm{OCH}_{2}\right.$, $\mathrm{HNC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}$), 2.11-1.92 ($\mathrm{m}, 945 \mathrm{H}, \mathrm{COCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 170.3,170.3,170.1,170.0,169.7,169.6,169.0\left(7 \times \mathrm{s}, \mathrm{COCH}_{3}\right), 166.1$ (CONH), $165.1(C O N H), 160.4\left(C_{\mathrm{ar}} O\right)$, $155.4\left(C_{\mathrm{a}}\right)$, $147.3\left(C_{\mathrm{d}^{\prime}}\right)$, $144.3\left(C_{\mathrm{d}}\right)$, 144.3, $144.2\left(C_{\text {triazole }}=\mathrm{CH}\right), 143.5\left(C_{\text {triazole }}=\mathrm{CH}\right), 134.7$ $\left(C_{\mathrm{a}^{\prime}}\right), 125.2\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $125.2\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $123.8\left(\mathrm{C}_{\text {triazole }}=C H\right)$, $121.8\left(C_{\mathrm{c}}\right)$, $121.1\left(C_{\mathrm{b}^{\prime}}\right)$, $120.9\left(C_{\mathrm{c}^{\prime}}\right)$, 115.9, $115.3\left(C_{\mathrm{b}}\right)$, $100.9\left(C_{1 \text { gal }}\right), 100.5\left(C_{19 \mathrm{clc}}\right), 94.2\left(\mathrm{CH}_{\mathrm{ar}}\right), 76.2\left(C_{4 \mathrm{glc}}\right), 72.6\left(C_{3 \mathrm{glc}}\right), 72.5\left(C_{5 \mathrm{glc}}\right), 71.5\left(C_{2 \mathrm{glc}}\right), 70.9\left(C_{3 \mathrm{gal}}\right), 70.5\left(C_{5 g a l}\right), 70.5$, 70.4, 70.3, 70.1, $69.2\left(\mathrm{OCH}_{2}\right), 68.9\left(\mathrm{C}_{2 \text { gal }}\right), 68.9\left(\mathrm{OCH}_{2}\right), 68.5\left(\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.5\left(C_{4 \text { gal }}\right), 64.5\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right)$, $62.0\left(C_{q}\right), 61.9\left(C_{6 g l c}+\mathrm{C}_{q} C H_{2} \mathrm{O}\right), 60.7\left(\mathrm{C}_{6 \mathrm{gal}}\right)$, $60.3\left(\mathrm{OCH}_{2}\right), 52.5\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.1\left(\mathrm{NCH}_{2}\right), 20.7$, 20.7, 20.6, 20.5, 20.5, 20.4 ($7 \times \mathrm{s}, \mathrm{COCH}_{3}$).
${ }^{31}$ P NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 10.2-9.8 (m, 9P).

Figure S227. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{S 4}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Figure S228. gCOSY spectrum of compound $\mathbf{S 4}$

Figure S229. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{S 4}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$. Arrows indicated central $\mathrm{Car}_{\mathrm{ar}} \mathrm{O}$ and $\mathrm{C}_{a r} \mathrm{H}$.

Figure S230. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{S 4}\left(\mathrm{CDCl}_{3}, 122 \mathrm{MHz}\right)$

3. Diffusion NMR experiments

NMR diffusion experiments: NMR diffusion measurements were performed at $25^{\circ} \mathrm{C}$ on a Varian Inova Unity 600 spectrometer (Agilent, Santa Clara, CA, USA) operating at a frequency of 599.95 MHz for ${ }^{1} \mathrm{H}$ using a 5 mm broadband z-gradient temperature-regulated probe. The temperature was calibrated with 1,2-ethanediol according to a standard procedure. ${ }^{10}$ The diffusion experiment employed a bipolar pulse-field gradient stimulated echo sequence as proposed by Wu et al. ${ }^{11}$ Gradient pulse durations δ were set between 3 and 5 ms while diffusion times (Δ) were 30 to 150 ms to ensure that the echo intensities were attenuated by at least 80%. A complete attenuation curve was obtained by measuring 30 gradient strengths, which were linearly incremented between 1.8 and $54.2 \mathrm{G} / \mathrm{cm}$. Hard $90^{\circ} 1 \mathrm{H}$ pulses of 15μ s were used and 36 k data points were recorded with 16 scans acquired for each gradient strength. A recycle delay of 3.0 s was used. The gradient strength was calibrated by back calculation of the coil constant from diffusion experiments on a $20 \% \mathrm{H}_{2} \mathrm{O} / 80 \% \mathrm{D}_{2} \mathrm{O}$ standard ($D=1.97 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$). ${ }^{12}$

Diffusion rates were extracted from the slope of the straight lines obtained by plotting $\ln (\Omega)$ against the gradientpulse power squared according to the following equation: $\ln (I)=-D \gamma^{2} G^{2} \delta^{2}(\Delta-\delta / 3-\tau / 2)+\ln \left(I_{0}\right)$ where I is the relative intensity of a chosen resonance $\left(I=I_{0} \exp -\left[D \gamma^{2} G^{2} \delta^{2}(\Delta-\delta / 3-\tau / 2)\right]\right)$, G=gradient strength, $\gamma=$ proton gyromagnetic ratio, $D=$ diffusion rate, $\delta=$ gradient duration, $\Delta=$ diffusion delay, and $\tau=$ pulse length for bipolar pulses. All diffusion spectra were processed in MatNMR. ${ }^{13}$

The diffusion rates (D) were calculated from the decay of the signal intensity with increasing field gradient strength of the $H_{4 g a l}$ proton ($\delta=5.30 \mathrm{ppm}$) for the samples in CDCl_{3} (acetylated conjugates) or the $H_{\text {triazole }}$ proton ($\delta=7.90 \mathrm{ppm}$) for the samples in $\mathrm{D}_{2} \mathrm{O}$ (hydroxylated derivatives). In all cases, mono-exponential behavior was observed, resulting in a linear decay of the logarithm of the signal intensity as a function of the gradient strength squared. The linearity of the data was consistent with a monomolecular behavior in each case, confirming the absence of aggregation phenomena in aqueous solution.

The measurement of the diffusion rate (D) allows calculating the solvodynamic diameter of a molecule. ${ }^{14}$ The dendrimers are considered as spherical molecular objects, and characterized by an apparent diffusion coefficient D. The application of the Stokes-Einstein equation gives an estimate of the diameter of the molecule.

Stokes-Einstein equation:

$$
D=\mathrm{K}_{\mathrm{B}} \mathrm{~T} / 6 \pi \eta r_{s}
$$

D: Diffusion rate ($\mathrm{m}^{2} \cdot \mathrm{~s}^{-1}$); K_{B} : Boltzmann's constant $\left(\mathrm{K}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}\right)$; T: Temperature (K) (T=298.15 K); η : solvent viscosity en Pa s; r_{s} : Solvodynamic radius of the species.

[^10]

Figure S231. a) Decay of normalized ${ }^{1} \mathrm{H}$ signal for the pentadecavalent dendron 31 in CDCl_{3} during the PFGSTE experiment. The gradient strength is increased linearly between 1.8 and $54.2 \mathrm{G} . \mathrm{cm}^{-1} ;$ b) Characteristic echo decays of the $H_{\text {tgal }}$ resonances ($\delta=5.30 \mathrm{ppm}$) as a function of squared gradient strength located in dendrons $\mathbf{1 5}, 29$ and 31. Such linear behavior was also obtained for the decay of the signal intensities of other protons located either in internal regions of the conjugates, including the dendritic core and connecting branches, or in the peripheral saccharidic belt (results not shown). Linear fits, which are plotted as solid lines and used to calculate self-diffusion coefficients, are characteristic of a single molecule and therefore rule out aggregation.

Figure S232. a) Decay of normalized ${ }^{1} \mathrm{H}$ signal for the tricontavalent glycodendrimer $\mathbf{2 6}$ in CDCl_{3} during the PFGSTE experiment. The gradient strength is increased linearly between 1.8 and $54.2{\mathrm{G} . \mathrm{cm}^{-1} ; \text { b) Characteristic echo decays of }}^{\text {b }}$ the $H_{\text {qgal }}$ resonances ($\delta=5.30 \mathrm{ppm}$) as a function of squared gradient strength located in lactosylated derivatives $\mathbf{2 6}$, 16, 17, 21, 25, 37, 40, 39, and 36. Such linear behavior was also obtained for the decay of the signal intensities of other protons located either in internal regions of the conjugates, including the dendritic core and connecting branches, or in the peripheral saccharidic belt (results not shown). Linear fits, which are plotted as solid lines and used to calculate self-diffusion coefficients, are characteristic of a single molecule and therefore rule out aggregation.

Figure S233. a) Decay of normalized ${ }^{1} \mathrm{H}$ signal for the octadecavalent hydroxylated glycodendrimer 19 in $\mathrm{D}_{2} \mathrm{O}$ during the PFGSTE experiment. The gradient strength is increased linearly between 1.8 and $54.2 \mathrm{G} . \mathrm{cm}^{-1}$; b) Characteristic echo decays of the $H_{\text {triazole }}$ resonances ($\delta=7.90 \mathrm{ppm}$) as a function of squared gradient strength located in lactosylated derivatives $19,28,18,27,22,38$, and 41 . Such linear behavior was also obtained for the decay of the signal intensities of other protons located either in internal regions of the conjugates, including the dendritic core and connecting branches, or in the peripheral saccharidic belt (results not shown). Linear fits, which are plotted as solid lines and used to calculate self-diffusion coefficients, are characteristic of a single molecule and therefore rule out aggregation.

4. Competitive Surface Plasmon Resonance Studies and Sensorgrams

For LecA: The studies were conducted using a Biacore T200 SPR instrument with a CM5 sensor chip. A continuous flow of HEPES buffer (10 mm HEPES and $150 \mathrm{~mm} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH} 7.4$) was maintained over the sensor surface at a flow rate of $10 \mu \mathrm{l} / \mathrm{min}$. The CM5 sensor chip was activated with an injection of a solution containing N -ethyl- N^{\prime}-(3-diethylaminopropyl) carbodiimide (EDC) (0.2 M) and N-hydroxysuccinimide (NHS) (0.05 M) for 7 minutes. Lactoside $42(200 \mu \mathrm{~g} / \mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mM})$ in NaOAc buffer (pH 4.5) was injected over the activated flow cell at flow rate of $10 \mu \mathrm{l} / \mathrm{min}$ for 2 minute to achieve a $\sim 230 \mathrm{RU}$ immobilization. The immobilization procedure was completed by an injection of ethanolamine hydrochloride (1 M) ($70 \mu \mathrm{~L}$), followed by a flow of the buffer ($100 \mu \mathrm{~L} / \mathrm{min}$.) , in order to eliminate physically adsorbed compounds. Ethanol amine alone was used in one of the flow-cell as a reference. The solutions of pre incubated (1 h) mixtures of glycodendrimers or monomers (with the various concentrations) and a LecA lectin ($1.5 \mu \mathrm{M}$) in running HEPES buffer are passed over flow cells of the lactoside and ethanol amine (Association: 3 min and dissociation: 3 min). The sensor chip was regenerated with the serial injections of D-lactose (0.25 M , 3 min), buffer (3 min), D-lactose (0.25 M , 3 min) and buffer (3 min). For each inhibition assay, LecA lectin (1.5 $\mu \mathrm{M}$) without inhibitor was injected to observe the full adhesion of the lectin onto the sugar-coated surface (0% inhibition). Response units from the surface of lactoside were subtracted from the surface of ethanol amine to eliminate non-specific interactions, as well as, bulk change in RU due to variation in refractive index of the medium. The primary subtracted sensorgrams were analyzed by 1:1 Langmuir model fitting, using the BIAevaluation software. For IC_{50} evaluation, the response units at the equilibrium was considered as the amount of lectin bound to the sugar surface in the presence of a defined concentration of inhibitor. Inhibition curves were obtained by plotting the percentage of inhibition against the inhibitor concentration (on a logarithmic scale) by using Origin 7.0 software (OriginLab Corp.) and IC_{50} values were extracted from a sigmoidal fit of the inhibition curve. The error values are obtained from the fitting of exponential curve.

For truncated hGal-3: The studies were conducted using a Biacore T200 SPR instrument with a CM5 sensor chip. A continuous flow of standard PBS buffer (HyClone $®$, Phosphate Buffered Saline (10X) 0.067M (PO_{4}), pH 7.4) was maintained over the sensor surface at a flow rate of $10 \mu \mathrm{l} / \mathrm{min}$. The CM5 sensor chip was activated with an injection of a solution containing N-ethyl- N^{\prime}-(3-diethylaminopropyl) carbodiimide (EDC) (0.2 M) and N-hydroxysuccinimide (NHS) (0.05 M) for 7 minutes. Lactoside $42(200 \mu \mathrm{~g} / \mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mM})$ in NaOAc buffer (pH 4.5) was injected over the activated flow cell at flow rate of $10 \mu \mathrm{l} / \mathrm{min}$ for 2 minute to achieve a $\sim 230 \mathrm{RU}$ immobilization. The immobilization procedure was completed by an injection of ethanolamine hydrochloride (1 M) $(70 \mu \mathrm{~L})$, followed by a flow of the buffer ($100 \mu \mathrm{~L} / \mathrm{min}$.), in order to eliminate physically adsorbed compounds. Ethanol amine alone was used in one of the flowcell as a reference. The solutions of pre incubated (15 min) mixtures of glycodendrimer or monomers (with the various concentrations) and a truncated galectin-3 (7.5 $\mu \mathrm{M}$) in running PBS buffer are passed over flow cells of the lactoside and ethanol amine (Association: 3 min and dissociation: 3 min). The sensor chip was regenerated with the serial injections of D-lactose (0.25 M , 3 min), buffer (3 min), D-lactose (0.25 M , 3 min) and buffer (3 min). For each inhibition assay, truncated hGal-3 $(7.5 \mu \mathrm{M})$ without inhibitor was injected to observe the full adhesion of the lectin onto the sugar-coated surface (0% inhibition). Response units from the surface of lactoside were subtracted from the surface of
ethanol amine to eliminate non-specific interactions, as well as, bulk change in RU due to variation in refractive index of the medium. The primary subtracted sensorgrams were analyzed by $1: 1$ Langmuir model fitting, using the BIAevaluation software. For IC_{50} evaluation, the response units at the equilibrium was considered as the amount of lectin bound to the sugar surface in the presence of a defined concentration of inhibitor. Inhibition curves were obtained by plotting the percentage of inhibition against the inhibitor concentration (on a logarithmic scale) by using Origin 7.0 software (OriginLab Corp.) and IC_{50} values were extracted from a sigmoidal fit of the inhibition curve. The error values are obtained from the fitting of exponential curve.

Sensorgrams and inhibitory curves with LecA

Figure S234. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of monomeric 43 varying from $18 \mu \mathrm{M}$ (top curve) to 4.60 mM (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 43.

Figure S235. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of hexavalent 18 varying from $0.306 \mu \mathrm{M}$ (top curve) to $40 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 18.

Figure S236. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of decavalent 22 varying from $0.075 \mu \mathrm{M}$ (top curve) to $10 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 22.

Figure S237. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of pentadecavalent 27 varying from $0.153 \mu \mathrm{M}$ (top curve) to $20 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 27.

Figure S238. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of octadecavalent 19 varying from $0.153 \mu \mathrm{M}$ (top curve) to $20 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 19.

Figure S239. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of tricontavalent 28 varying from $0.5 \mu \mathrm{M}$ (top curve) to $16 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 28.

Figure S240. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of tricontavalent 38 varying from $0.306 \mu \mathrm{M}$ (top curve) to $20 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 38.

Figure S241. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of nonacontavalent 41 varying from $0.125 \mu \mathrm{M}$ (top curve) to $8 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 41.

Figure S242. (left) Sensorgrams obtained by injection of LecA ($1.5 \mu \mathrm{M}$) lectin incubated with different concentrations of "short" hexavalent reference (containing 6 Lactoside but without PEG chains) varying from $3.75 \mu \mathrm{M}$ (top curve) to $240 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for this compound.

Sensorgrams and inhibitory curves with truncated hGal-3

Figure S243. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M})$ lectin incubated with different concentrations of monomeric 43 varying from $37.5 \mu \mathrm{M}$ (top curve) to 1.2 mM (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 43.

Figure S244. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M})$ lectin incubated with different concentrations of hexavalent 18 varying from $0.25 \mu \mathrm{M}$ (top curve) to $8 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 18.

Figure S245. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M}$) lectin incubated with different concentrations of decavalent 22 varying from $0.062 \mu \mathrm{M}$ (top curve) to $2 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 22.

Figure S246. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M}$) lectin incubated with different concentrations of pentadecavalent 27 varying from $0.1 \mu \mathrm{M}$ (top curve) to $3.2 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 27.

Figure S247. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M}$) lectin incubated with different concentrations of octadecavalent 19 varying from $0.1 \mu \mathrm{M}$ (top curve) to $3.2 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 19.

Figure S248. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M})$ lectin incubated with different concentrations of tricontavalent 28 varying from $0.1 \mu \mathrm{M}$ (top curve) to $3.2 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 28.

Figure S249. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M}$) lectin incubated with different concentrations of tricontavalent 38 varying from $0.1 \mu \mathrm{M}$ (top curve) to $1.6 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 38.

Figure S250. (left) Sensorgrams obtained by injection of truncated hGal-3 (7.5 $\mu \mathrm{M})$ lectin incubated with different concentrations of nonacontavalent 41 varying from $0.05 \mu \mathrm{M}$ (top curve) to $1.6 \mu \mathrm{M}$ (bottom curve) on the surface of immobilized lactoside 42. (right) The inhibitory curve for the compound 41.

5. X-Ray crystallographic analysis

Figure S251. ORTEP at 50\% thermal ellipsoid probability of the elementary unit cell of 1. Hydrogen atoms are omitted for clarity.

Crystal Structure Report for 1

A colorless plate-like specimen of $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{1.50} \mathrm{O}_{6} \mathrm{P}_{1.50}$, approximate dimensions $0.120 \mathrm{~mm} \times 0.418 \mathrm{~mm} \times 0.583 \mathrm{~mm}$, was used for X-ray crystallographic analysis on a Bruker APEX DUOusing Molybdenum radiation ($0.71073 \AA$ wavelength) at 150K. A total of 1464 frames were collected. The total exposure time was 4.07 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 14096 reflections to a maximum θ angle of 27.67° ($0.77 \AA$ resolution), of which 5478 were independent (average redundancy 2.573, completeness $=99.3 \%, R_{\text {int }}=2.64 \%$) and 5004 (91.35%) were greater than $2 \sigma\left(F^{2}\right)$. The final cell constants of $\underline{a}=18.901(2) \AA, \underline{b}=7.5595(9) \AA, \underline{c}=17.833(2) \AA, \beta=111.235(2)^{\circ}$, volume $=2375.0(5) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 5832 reflections above $20 \sigma(\mathrm{I})$ with $4.624^{\circ}<2 \theta<55.03^{\circ}$. Data were corrected for absorption effec ts using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.948 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7066 and 0.7456 . The structure was solved and refined using the Bruker

SHELXTL Software Package, using the space group C 121 (C2, \#5), with $Z=4$ for the formula unit, $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{1.50} \mathrm{O}_{6} \mathrm{P}_{1.50}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 326 variables converged at R 1 $=3.10 \%$, for the observed data and $w R 2=6.93 \%$ for all data. The goodness-of-fit was 1.022. The largest peak in the final difference electron density synthesis was $0.213 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.296 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.041 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.423 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 1056 \mathrm{e}^{-}$.

Table S1.Information on sample, data collection and structure refinement for 1.

Chemical formula	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{1.50} \mathrm{O}_{6} \mathrm{P}_{1.50}$	
Formula weight	$508.91 \mathrm{~g} / \mathrm{mol}$	
Temperature	150(2) K	
Wavelength	0.71073 A	
Crystal size	$0.120 \times 0.418 \times 0.583 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	monoclinic	
Space group	C 121	
Unit cell dimensions	$\mathrm{a}=18.901(2) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=7.5595(9) \AA$	$\beta=111.235(2)^{\circ}$
	$\mathrm{c}=17.833(2) \AA$	$\mathrm{Y}=90^{\circ}$
Volume	2375.0(5) \AA^{3}	
Z	4	
Density (calculated)	$1.423 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.196 \mathrm{~mm}^{-1}$	
F(000)	1056	
Theta range for data collection	1.23 to 27.67°	
Index ranges	$-24<=h<=24,-9<=k<=9,-23<=1<=23$	
Reflections collected	14096	
Independent reflections	$5478[\mathrm{R}$ (int) $=0.0264]$	
Coverage of independent reflections	99.3\%	
Absorption correction	multi-scan	
Max. and min. transmission	0.7456 and 0.7066	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F^{2}	
Refinement program	SHELXL-2013 (Sheldrick, 2013)	
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$	
Data / restraints / parameters	5478/1/326	
Goodness-of-fit on F^{2}	1.022	
$\Delta / \sigma_{\text {max }}$	0.001	
Final R indices	5004 data; l>2б(I)	$R 1=0.0310, w R 2=0.0667$
	all data	$R 1=0.0366, w R 2=0.0693$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0329 \mathrm{P})^{2}+0.6412 \mathrm{P}\right]$	
Absolute structure parameter	0.1(0)	
Largest diff. peak and hole	0.213 and -0.296 e \AA^{-3}	
R.M.S. deviation from mean	$0.041 \mathrm{e}^{-3}$	

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (${ }_{\mathrm{A}}{ }^{2}$) for $\mathbf{1}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
P1	0.5	0.44796(10)	0.5	0.01529(18)
P2	0.56920(3)	0.12904(8)	0.56291(3)	0.01511(13)
O1	0.43407(11)	0.5366(3)	0.84159(11)	0.0392(5)
O2	0.47457(9)	0.5908(2)	0.55014(9)	0.0208(4)
O3	0.57376(9)	0.0657(2)	0.64912(9)	0.0189(4)
O4	0.73128(10)	0.3698(3)	0.94575(10)	0.0307(4)
O5	0.64702(9)	0.0459(2)	0.56383(9)	0.0185(3)
O6	0.73530(9)	0.0805(2)	0.30021(10)	0.0250(4)
N1	0.57058(11)	0.3380(2)	0.55677(12)	0.0173(4)
N2	0.5	0.0275(4)	0.5	0.0176(6)
C1	0.4482(2)	0.0901(7)	0.8859(2)	0.0698(13)
C2	0.41918(16)	0.2305(5)	0.87093(18)	0.0413(7)
C3	0.38492(17)	0.4062(4)	0.85576(17)	0.0353(7)
C4	$0.44249(14)$	0.5345(4)	0.76777(15)	0.0241(5)
C5	0.49528(13)	0.6538(3)	$0.75968(14)$	0.0230(5)
C6	0.50670(13)	0.6666(3)	0.68761(14)	0.0196(5)
C7	0.46537(13)	0.5594(3)	$0.62387(13)$	0.0173(5)
C8	0.61731(12)	0.1472(3)	0.72243 (13)	0.0185(5)
C9	0.58092(13)	0.1761(3)	$0.77627(14)$	0.0232(5)
C10	0.62149(14)	0.2494(4)	0.85069(15)	0.0275(6)
C11	0.69723(15)	0.2937(3)	$0.87079(14)$	0.0228(5)
C12	0.80545(16)	0.4430(4)	0.96475(16)	0.0323(6)
C13	0.86563(16)	0.3102(4)	0.99559(15)	0.0304(6)
C14	0.91374(17)	0.2044(5)	0.02319(16)	0.0406(7)
C15	0.66949(13)	0.0541(3)	$0.49653(14)$	0.0173(5)
C16	0.62500(13)	0.9803(3)	$0.42358(14)$	0.0195(5)
C17	0.65023(13)	0.9886(3)	0.35964(15)	0.0209(5)
C18	0.71914(13)	0.0683(3)	$0.36929(14)$	0.0199(5)
C19	0.80514(14)	$0.1635(4)$	0.30645(15)	0.0263(6)
C20	0.80208(14)	0.2071(3)	0.22548(15)	0.0258(6)
C21	0.80047(16)	0.2484(4)	$0.16158(17)$	0.0362(7)
C22	0.76514(12)	0.1327(4)	$0.44404(13)$	0.0218(5)
C23	0.73919(12)	0.1275(4)	0.50782(14)	0.0204(5)
C24	0.73338(14)	0.2623(3)	0.81697(14)	0.0241(5)
C25	0.69281(14)	0.1885(3)	0.74190(14)	0.0231(5)
C26	$0.40214(14)$	0.4266(3)	$0.70432(14)$	0.0237(5)
C27	$0.41313(14)$	0.4403(3)	0.63109(14)	0.0225(5)

Table S3. Bond lengths (Ă) for 1.

P1-O2	$1.5839(16)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.5839(16)$
P1-N1	$1.587(2)$	$\mathrm{P} 1-\mathrm{N} 1$	$1.587(2)$
P2-N2	$1.5799(14)$	$\mathrm{P} 2-\mathrm{O} 3$	$1.5825(16)$
P2-N1	$1.584(2)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.5943(16)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.382(3)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.438(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.407(3)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.410(3)$
O4-C11	$1.382(3)$	$\mathrm{O} 4-\mathrm{C} 12$	$1.429(3)$
O5-C15	$1.412(3)$	$\mathrm{O} 6-\mathrm{C} 18$	$1.375(3)$
O6-C19	$1.429(3)$	$\mathrm{N} 2-\mathrm{P} 2$	$1.5798(14)$
C1-C2	$1.180(5)$	$\mathrm{C} 1-\mathrm{H} 1$	0.95
C2-C3	$1.459(5)$	$\mathrm{C} 3-\mathrm{H} 19$	0.99
C3-H18	0.99	$\mathrm{C} 4-\mathrm{C} 26$	$1.379(3)$
C4-C5	$1.391(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.382(3)$
C5-H3	0.95	$\mathrm{C} 6-\mathrm{C} 7$	$1.384(3)$
C6-H4	0.95	$\mathrm{C} 8-\mathrm{C} 27$	$1.376(3)$
C8-C25	$1.377(3)$	$\mathrm{C} 9-\mathrm{H} 12$	$1.386(3)$
C9-C10	$1.385(3)$	$\mathrm{C} 10-\mathrm{H} 17$	0.95
C10-C11	$1.385(4)$	$\mathrm{C} 12-\mathrm{C} 13$	0.95
C11-C24	$1.385(3)$	$\mathrm{C} 14-\mathrm{H} 2$	$1.466(4)$
C12-H15	0.99	$\mathrm{C} 15-\mathrm{C} 16$	0.99
C13-C14	$1.177(4)$	$\mathrm{C} 16-\mathrm{H} 5$	0.95
C15-C23	$1.375(3)$	$\mathrm{C} 17-\mathrm{H} 6$	$1.385(3)$
C16-C17	$1.387(3)$	$\mathrm{C} 19-\mathrm{C} 20$	0.95
C17-C18	$1.388(3)$	$\mathrm{C} 19-\mathrm{H} 8$	0.95
C18-C22	$1.389(3)$	$\mathrm{C} 21-\mathrm{H} 7$	$1.462(3)$
C19-H9	0.99	$\mathrm{C} 22-\mathrm{H} 11$	0.99
C20-C21	$1.171(4)$	$\mathrm{C} 24-\mathrm{C} 25$	0.95
C22-C23	$1.393(3)$	0.95	
C23-H10	0.95	$1.396(3)$	
C24-H13	0.95	0.95	
C26-C27	$1.398(3)$	0.95	
C27-H21	0.95		

Table S4. Bond angles (9 for 1.

O2-P1-O2	94.00(12)	O2-P1-N1	111.14(9)
O2-P1-N1	110.74(9)	O2-P1-N1	110.74(9)
O2-P1-N1	111.14(9)	N1-P1-N1	116.79(15)
N2-P2-O3	106.41(8)	N2-P2-N1	117.75(12)
O3-P2-N1	111.87(10)	N2-P2-O5	109.82(9)
O3-P2-O5	98.35(9)	N1-P2-O5	110.84(10)
C4-O1-C3	117.7(2)	C7-O2-P1	125.28(14)
C8-O3-P2	125.21(14)	C11-O4-C12	117.6(2)
C15-O5-P2	122.29(14)	C18-O6-C19	117.27(18)
P2-N1-P1	122.38(13)	P2-N2-P2	121.84(18)
C2-C1-H1	180.0	C1-C2-C3	177.7(4)
O1-C3-C2	112.6(2)	O1-C3-H19	109.1
C2-C3-H19	109.1	O1-C3-H18	109.1
C2-C3-H18	109.1	H19-C3-H18	107.8
C26-C4-O1	124.6(2)	C26-C4-C5	120.2(2)
O1-C4-C5	115.2(2)	C6-C5-C4	120.1(2)
C6-C5-H3	120.0	C4-C5-H3	120.0
C5-C6-C7	119.4(2)	C5-C6-H4	120.3
C7-C6-H4	120.3	C27-C7-C6	121.1(2)
C27-C7-O2	122.2(2)	C6-C7-O2	116.4(2)
C25-C8-C9	121.2(2)	C25-C8-O3	122.5(2)
C9-C8-O3	116.2(2)	C10-C9-C8	119.0(2)
C10-C9-H12	120.5	C8-C9-H12	120.5
C11-C10-C9	120.4(2)	C11-C10-H17	119.8
C9-C10-H17	119.8	O4-C11-C10	115.3(2)
O4-C11-C24	124.6(2)	C10-C11-C24	120.1(2)
O4-C12-C13	112.7(2)	O4-C12-H15	109.1
C13-C12-H15	109.1	O4-C12-H16	109.1
C13-C12-H16	109.1	H15-C12-H16	107.8
C14-C13-C12	177.4(3)	C13-C14-H2	180.0
C23-C15-C16	121.6(2)	C23-C15-O5	117.4(2)
C16-C15-O5	120.9(2)	C15-C16-C17	118.8(2)
C15-C16-H5	120.6	C17-C16-H5	120.6
C16-C17-C18	120.3(2)	C16-C17-H6	119.9
C18-C17-H6	119.9	O6-C18-C17	114.9(2)
O6-C18-C22	124.8(2)	C17-C18-C22	120.3(2)
O6-C19-C20	108.5(2)	O6-C19-H9	110.0
C20-C19-H9	110.0	O6-C19-H8	110.0
C20-C19-H8	110.0	H9-C19-H8	108.4
C21-C20-C19	177.5(3)	C20-C21-H7	180.0
C18-C22-C23	119.4(2)	C18-C22-H11	120.3
C23-C22-H11	120.3	C15-C23-C22	119.6(2)
C15-C23-H10	120.2	C22-C23-H10	120.2
C11-C24-C25	119.7(2)	C11-C24-H13	120.1
C25-C24-H13	120.1	C8-C25-C24	119.5(2)
C8-C25-H14	120.3	C24-C25-H14	120.3
C4-C26-C27	119.8(2)	C4-C26-H20	120.1
C27-C26-H20	120.1	C7-C27-C26	119.3(2)

Table S5. Torsion angles (9 for 1.

O2-P1-O2-C7	-160.5(2)	N1-P1-O2-C7	-46.1(2)
N1-P1-O2-C7	85.43(19)	N2-P2-O3-C8	-166.90(17)
N1-P2-O3-C8	-37.0(2)	O5-P2-O3-C8	79.50(18)
N2-P2-O5-C15	64.96(18)	O3-P2-O5-C15	175.84(17)
N1-P2-O5-C15	-66.86(19)	N2-P2-N1-P1	9.92(18)
O3-P2-N1-P1	-113.81(14)	O5-P2-N1-P1	137.52(13)
O2-P1-N1-P2	-133.46(13)	O2-P1-N1-P2	123.45(14)
N1-P1-N1-P2	-5.10(9)	O3-P2-N2-P2	121.66(7)
N1-P2-N2-P2	-4.76(9)	O5-P2-N2-P2	-132.85(7)
C4-O1-C3-C2	75.2(3)	C3-O1-C4-C26	5.9(4)
C3-O1-C4-C5	-175.0(2)	C26-C4-C5-C6	1.0(4)
O1-C4-C5-C6	-178.2(2)	C4-C5-C6-C7	-0.2(4)
C5-C6-C7-C27	0.0(3)	C5-C6-C7-O2	174.2(2)
P1-O2-C7-C27	-61.8(3)	P1-O2-C7-C6	124.1(2)
P2-O3-C8-C25	-49.7(3)	P2-O3-C8-C9	133.50(19)
C25-C8-C9-C10	0.6(4)	O3-C8-C9-C10	177.5(2)
C8-C9-C10-C11	0.2(4)	C12-O4-C11-C10	-170.6(2)
C12-O4-C11-C24	8.9(4)	C9-C10-C11-O4	178.5(2)
C9-C10-C11-C24	-1.1(4)	C11-O4-C12-C13	-84.8(3)
P2-O5-C15-C23	124.8(2)	P2-O5-C15-C16	-59.4(3)
C23-C15-C16-C17	-3.1(3)	O5-C15-C16-C17	-178.7(2)
C15-C16-C17-C18	0.5(3)	C19-O6-C18-C17	179.2(2)
C19-O6-C18-C22	0.9(3)	C16-C17-C18-O6	-175.2(2)
C16-C17-C18-C22	3.2(4)	C18-O6-C19-C20	-164.5(2)
O6-C18-C22-C23	173.9(2)	C17-C18-C22-C23	-4.3(4)
C16-C15-C23-C22	1.9(4)	O5-C15-C23-C22	177.6(2)
C18-C22-C23-C15	1.9(4)	O4-C11-C24-C25	-178.4(2)
C10-C11-C24-C25	1.1(4)	C9-C8-C25-C24	-0.6(4)
O3-C8-C25-C24	-177.3(2)	C11-C24-C25-C8	-0.3(4)
O1-C4-C26-C27	177.5(2)	C5-C4-C26-C27	-1.5(4)
C6-C7-C27-C26	-0.5(4)	O2-C7-C27-C26	-174.4(2)
C4-C26-C27-C7	1.2(4)		

Table S6. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 1.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{b}^{*} \mathrm{U}_{12}\right]$						
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
P1	0.0195(4)	0.0119(4)	0.0153(4)	0	0.0074(3)	0
P2	0.0151 (3)	0.0138(3)	0.0161(3)	0.0011(2)	0.0052(2)	0.0002(2)
O1	0.0473(12)	0.0541(14)	0.0242(10)	-0.0145(9)	0.0224(9)	-0.0265(11)
O2	0.0321(9)	0.0151(9)	0.0181(8)	0.0014(6)	0.0125(7)	0.0047(7)
O3	0.0202(8)	0.0186(8)	0.0176(8)	0.0012(7)	0.0064(7)	-0.0032(7)
O4	0.0303(10)	0.0401(11)	0.0205(9)	-0.0051(9)	0.0076(8)	-0.0025(9)
O5	0.0157(8)	0.0205(9)	0.0195(8)	0.0015(7)	0.0065(6)	0.0026(7)
O6	0.0216(8)	0.0328(11)	0.0236(9)	-0.0052(7)	0.0118(7)	-0.0064(7)
N1	0.0175(10)	0.0168(10)	0.0173(10)	0.0003(8)	0.0059(8)	-0.0019(8)
N2	0.0163(14)	0.0144(14)	0.0203(15)	0	0.0043(11)	0
C1	0.056(2)	0.090(3)	0.077(3)	0.046(3)	0.040(2)	0.025(2)
C2	0.0310(15)	0.063(2)	0.0332(15)	0.0135(17)	0.0159(12)	-0.0039(17)
C3	0.0364(15)	0.0485(19)	0.0286(15)	-0.0052(13)	0.0210(13)	-0.0161(14)
C4	0.0236(13)	0.0301(14)	0.0202(12)	-0.0033(11)	0.0098(10)	-0.0053(11)
C5	0.0219(12)	0.0262(14)	0.0191(11)	-0.0057(10)	0.0053(9)	-0.0062(10)
C6	0.0176(11)	0.0174(12)	0.0232(12)	0.0000(9)	0.0066(9)	-0.0010(9)
C7	0.0225(12)	0.0157(11)	0.0141(11)	0.0019(9)	0.0072(9)	0.0059(10)
C8	0.0210(11)	0.0160(12)	0.0163(11)	0.0031(9)	0.0041(9)	0.0010(10)
C9	0.0176(11)	0.0300(14)	0.0219(12)	0.0042(10)	0.0071(9)	0.0040(10)
C10	0.0264(13)	0.0362(15)	0.0220(12)	0.0007(12)	0.0112(10)	0.0064(12)
C11	0.0276(13)	0.0225(13)	0.0161(12)	0.0016(9)	0.0052(10)	0.0015(10)
C12	0.0362(15)	0.0326(15)	$0.0221(13)$	-0.0056(12)	0.0033(11)	-0.0064(13)
C13	0.0323(15)	0.0400(16)	0.0168(13)	-0.0047(12)	0.0063(12)	-0.0070(13)
C14	0.0386(16)	0.054(2)	0.0251(14)	-0.0030(14)	0.0068(12)	0.0074(16)
C15	0.0175(11)	0.0155(11)	0.0204(12)	0.0026(9)	0.0086(9)	0.0050(9)
C16	0.0182(12)	0.0161(12)	0.0245(13)	-0.0015(10)	0.0081(10)	-0.0006(9)
C17	0.0187(12)	0.0200(12)	0.0221(12)	-0.0039(10)	0.0052(10)	-0.0004(9)
C18	0.0212(12)	0.0174(12)	0.0230(12)	-0.0006(9)	0.0104(10)	0.0031(9)
C19	0.0218(12)	0.0298(15)	0.0277(13)	0.0001(11)	0.0096(10)	-0.0054(10)
C20	0.0236(13)	0.0239(14)	0.0323(14)	-0.0018(11)	0.0131(11)	-0.0016(11)
C21	0.0400(16)	0.0404(17)	0.0323(15)	0.0003(14)	0.0180(13)	-0.0071(14)
C22	0.0160(11)	0.0218(12)	0.0276(12)	-0.0013(11)	0.0080(9)	-0.0015(11)
C23	0.0175(11)	0.0210(12)	$0.0197(11)$	-0.0017(11)	0.0033(9)	-0.0001(11)
C24	0.0207(12)	0.0295(14)	$0.0219(12)$	0.0010(11)	0.0075(10)	-0.0059(11)
C25	0.0242(12)	0.0295(14)	0.0179(11)	0.0004(10)	0.0105(10)	-0.0016(10)
C26	0.0244(12)	0.0242(13)	0.0244(13)	-0.0050(10)	0.0111(10)	-0.0092(11)
C27	0.0261(13)	0.0197(12)	0.0200(12)	-0.0045(10)	0.0063(10)	-0.0011(11)

Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $\mathbf{1}$.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
H1	0.4715	-0.0230	0.8979	0.084
H19	0.3371	0.4007	0.8083	0.042
H18	0.3721	0.4430	0.9026	0.042
H3	0.5235	0.7266	0.8038	0.028
H4	0.5426	0.7482	0.6819	0.024
H12	0.5289	0.1460	0.7624	0.028
H17	0.5972	0.2694	0.8882	0.033
H15	0.8134	0.5372	1.0055	0.039
H16	0.8090	0.4978	0.9158	0.039
H2	0.9526	0.1190	1.0455	0.049
H5	0.5781	-0.0750	0.4174	0.023
H6	0.6202	-0.0605	0.3091	0.025
H9	0.8482	0.0825	0.3329	0.032
H8	0.8127	0.2724	0.3392	0.032
H7	0.7992	0.2820	0.1098	0.043
H11	0.8138	0.1799	0.4516	0.026
H10	0.7695	0.1743	0.5588	0.024
H13	0.7856	0.2908	0.8311	0.029
H14	0.7171	0.1669	0.7045	0.028
H20	0.3670	0.3433	0.7103	0.028
H21	0.3848	0.3681	0.5868	0.027

[^0]: ${ }^{1}$ V. Percec et al., J. Am. Chem. Soc., 2013, 135, 9055-9077.

[^1]: ${ }^{2}$ M. Srinivasan, S. Sankararaman, H. Hopf, I. Dix and P.G. Jones, J. Org. Chem., 2001, 66, 4299-4303.

[^2]: ${ }^{3}$ N. Jain, Y. Arntz, V. Goldschmidt, G. Duportail, Y. Mely and A. S. Klymchenko, Bioconjugate Chem., 2010, 21, 2110-2118.

[^3]: * The use of bromoacetylchloride at this step provides a mixture of halogenated ($\mathrm{Cl} / \mathrm{Br}$) derivatives after the same steps of purification.

[^4]: ${ }^{4}$ Y. M. Chabre, C. Contino-Pépin, V. Placide, T. C. Shiao and R. Roy, J. Org. Chem., 2008, 73, 5602-5605.

[^5]: ${ }^{5}$ X. Sheng, T. C. Mauldin and M. R. Kessler, J. Polym. Sci.: Part A: Polym. Chem., 2010, 48, 4093-4102.

[^6]: ${ }^{6}$ Y. M. Chabre, D. Giguère, B. Blanchard, J. Rodrigue, S. Rocheleau, M. Neault, S. Rauthu, A. Papadopoulos, A. A. Arnold, A. Imberty and R. Roy, Chem. Eur. J., 2011, 17, 6545-6562.

[^7]: ${ }^{7}$ R. Kumar, P. R. Maulik and A. K. Misra, Glycoconj. J. 2008, 25, 595-602.

[^8]: ${ }^{8}$ F. D. Tropper, F. O. Andersson, S. Braun and R. Roy, Synthesis 1992, 618-620.

[^9]: ${ }^{9}$ X.-L. Sun, C. L. Stabler, C. S. Cazalis and E. L. Chaikof, Bioconjugate Chem., 2006, 17, 52-57.

[^10]: ${ }^{10}$ S. Berger and S. Braun, 200 and More NMR Experiments-A Practical Course; Wiley-VCH: Weinheim, 2004; pp 145-148.
 ${ }_{11}^{11}$ D. H. Wu, A. D. Chen, C. S. and Johnson Jr., J. Magn. Reson., Ser. A 1995, 115, 260-264.
 ${ }^{12}$ M. Holz and H. Weingärtner, J. Magn. Reson. 1991, 92, 115-125.
 ${ }^{13}$ J. D. van Beek, J. Magn. Reson. 2007, 187, 19-26.
 ${ }^{14}$ M. D. Diaz and Berger, S. Carbohydr. Res. 2000, 329, 1-5.

