Supporting Information

Ru(bpy)₃²⁺ Derivatized Polystyrenes Constructed by Nitroxide-Mediated Radical Polymerization. Relationship Between Polymer Chain Length, Structure and Photophysical Properties[†]

Gyu Leem,^a Shahar Keinan,^b Junlin Jiang,^a Zhuo Chen,^a Toan Pho,^c Zachary A. Morseth,^b Zhenya Hu,^b Egle Puodziukynaite,^a Zhen Fang,^b John M. Papanikolas,^b John R. Reynolds,^b and Kirk S. Schanze^a,*

^aDepartment of Chemistry, University of Florida, P.O.Box 117200, Gainesville, FL, USA 32611.

^b Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599.

^c School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA 30332.

Full citation for Ref. 27

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, and D. J. Fox, Gaussian 09, Revision 01, Gaussian, Inc.: Wallingford CT, 2009.

Full citation for Ref. 34

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.
M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, and D. J. Fox, Gaussian 09, Revision 01, Gaussian, Inc.: Wallingford CT, 2009.

Figure S1. GPC elution curve of (a) PVBC-n-NMP, (b) PVBC-n and (c) PVBA-n in THF

Figure S2. ¹H NMR spectra of (1) PVBC-170-NMP, (2) PVBC-170 and (3) PVBA-170 in CDCl₃, (4) PS_{170} -Ru(Cl) in D₂O, and (5) PS_{170} -Ru(PF₆) in CD₃CN

Figure S3. ¹H NMR spectra of PVBC-35-NMP (top), and PVBC-35 (bottom) in CDCl₃.

Figure S4. ATR-IR spectra of (top) PVBA-170 and (bottom) PS₁₇₀-Ru(Cl).

Figure S5. Emission decay profiles of (top) Ru(PF₆) (black), PS₃₅-Ru(PF₆) (red), PS₈₀-Ru(PF₆) (navy), and PS₁₇₀-Ru(PF₆) (olive) in degassed CH₃CN and (bottom) Ru(Cl) (black), PS₃₅-Ru(Cl) (red), PS₈₀-Ru(Cl) (navy), and PS₁₇₀-Ru(Cl) (olive) in degassed methanol.

Figure S6. Emission quenching of (a) Ru(Cl), (b) PS₃₅-Ru(Cl), (c) PS₈₀-Ru(Cl), and (d) PS₁₇₀-Ru(Cl) ($c = 10 \mu$ M) by AQS ($c = 0 - 2 \mu$ M) in degassed aqueous solution.

Table S1. PS_{20} -Ru (20 repeat units) studied using UFF MD. All simulation cells include the polymer, 20 Cl⁻ ions, and solvent molecules.

Name	Tacticity	Solvent	# of solvent molecules	Average nearest- neighbor Ru-Ru distance/Å	Shortest Ru- Ru distance from g(r)/Å
P1	Atactic	acetonitrile	1072	10.78 ± 1.73	7.8
P2	Syndiotactic	acetonitrile	1072	10.81 ± 1.70	7.8
Р3	Isotactic	acetonitrile	1023	10.56 ± 1.81	7.7
P1'	Atactic	CH ₃ OH	1373	10.57 ± 2.19	7.5
P2'	Syndiotactic	CH ₃ OH	1373	11.08 ± 1.32	8.1
P3'	Isotactic	CH ₃ OH	1310	11.19 ± 1.40	7.9

Figure S7. Variations in radial distribution function, g(r), for Ru-Ru distances for different PS₂₀-Ru (20 repeat units) tacticities (atactic polymer in blue, syndiotactic in red, and isotactic polymer in green) in (a) acetonitrile and (b) methanol.

Figure S8. Atactic PS_{20} -Ru (20 repeat units) solvated in methanol (blue line, maximum is at 16.71 Å) has a smaller radius of gyration than in acetonitrile (red line, maximum is at 17.09 Å).

Figure S9. TD-DFT calculated electronic excitations for 12 polypyridylruthenium dimers, as well as the average of all 12 spectra.

Table S2. Which atoms contributed to orbitals that participate in calculated UV-Vis excitations
for 3 dimers with different Ru-Ru distances. The atoms are named according to the center, i.e.
Ru1 is the Ru atom in monomer 1, while Ru2 is the Ru atom in the 2 nd monomer in the dimer.
Bpy2B is the bpy unit in monomer 2 that is the bridge to the polymer backbone, and bpy21 and
bpy22 are the other bpy units in monomer 2. The only case where there are excitations between
monomers is when the two monomers are close by (7.5A).

Excitation	Strength	Atoms that contribute to the orbitals that participate			
[nm]	[calculated]	in the excitation			
Snapshot 2, dimer distance 12.2A					
469.5	0.16	Ru2(74%)>bpy2B(76%)			
450.5	0.13	Ru1(73%)>bpy1B(75%)			
444.4	0.10	Ru2(74%)>bpy22(71%)			
427.4	0.10	Ru1(73%)>bpy12(44%), bpy11(44%)			
319.5	0.05	Ru1(73%)>bpy12(45%), bpy11(42%)			
289.0	0.16	bpy2B(47%)>bpy2B(82%)			
281.7	0.05	bpy2B(74%)>bpy2B(88%)			
Snapshot 2, dimer distance 9.1A					
463.0	0.09	Ru2(49%)>bpy2B(63%)			
456.6	0.12	Ru1(56%)>bpy1B(73%)			
454.5	0.06	Ru2(64%)>bpy22(40%), bpy21(34%)			
444.4	0.09	Ru2(59%)>bpy22(41%), bpy21(36%)			
436.7	0.10	Ru1(71%)>bpy12(44%), bpy11(37%)			
434.8	0.12	Ru2(57%)>bpy21(46%), bpy22(38%)			
316.5	0.07	Ru2(72%)>bpy21(34%)			
285.7	0.07	bpy11(43%)>bpy1B(78%)			
Snapshot 2, dimer distance 7.5A					
467.3	0.10	Ru2(71%)>bpy2B(59%)			
456.6	0.13	Ru1(55%)>bpy1B(41%)			
438.6	0.12	Ru2(51%)>bpy22(32%), bpy21(27%)			
431.0	0.06	Ru1(56%)>bpy12(45%)			
330.0	0.08	Ru1(73%)>bpy11(27%), bpy21(17%), bpy22(18%)			
294.1	0.09	bpy2B(43%), Ru2(36.3%)>bpy2B(35%), bpy11(25%)			